您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>超声波无线电能传输的声电通道设计

超声波无线电能传输的声电通道设计

142    2024-04-26

¥0.50

全文售价

作者:臧俊斌1,2, 李瑜2, 祁博文2, 崔娟2, 薛晨阳2

作者单位:1. 山西工学院信息工程学院, 山西 朔州 036000;
2. 中北大学 省部共建动态测试技术国家重点实验室,山西 太原 030051


关键词:超声波;无线电能传输;声学通道设计;共轭阻抗匹配


摘要:

为了解决磁耦合方式无线电能传输技术在金属障碍环境下因涡流效应而效率低下问题,该文开展了金属障碍环境下超声无线电能传输技术研究。首先从声学的角度分析能量传输通道参数对声波透射系数的影响规律,并指导完成通道参数的配置。然后,采用同时共轭阻抗匹配技术完成通道输入端口与输出端口的阻抗匹配网络设计,并通过实验验证阻抗匹配网络的有效性。测试结果表明,该文所设计的超声波无线电能传输系统透11 mm厚304不锈钢障碍的理论最佳传输效率为68%,进行同时共轭阻抗匹配后通道的实际能量传输效率为56.25%,传输功率达51.53 W。该研究所达到的能量传输效率和传输功率均能满足绝大部分使用需求。该技术在军事、航天等领域具有较好的应用前景。


Acousto-electric channel design for ultrasonic wireless power transmission
ZANG Junbin1,2, LI Yu2, QI Bowen2, CUI Juan2, XUE Chenyang2
1. College of Information Engineering, Shanxi College of Technology, Shuozhou 036000, China;
2. State Key Laboratory of Dynamic Testing Technology Jointly Built By Provincial and Ministry, North University of China, Taiyuan 030051, China
Abstract: In order to solve the problem of inefficiency of wireless power transmission technology by magnetic coupling method in metal obstacle environment due to eddy current effect, this paper carries out the research of ultrasonic wireless power transmission technology in metal obstacle environment. Firstly, the influence of the energy transmission channel parameters on the acoustic transmission coefficient is analysed from the acoustic point of view, and the configuration of the channel parameters is guided to be completed. Then, the simultaneous conjugate impedance matching technique was used to complete the design of the impedance matching network for the channel input port and output port, and the effectiveness of the impedance matching network was verified through experiments. The test results show that the theoretical optimum transmission efficiency of the ultrasonic wireless power transmission system designed in this paper is 68% through 11 mm thick 304 stainless steel barriers, and the actual energy transmission efficiency of the channel after simultaneous conjugate impedance matching is 56.25%, and the transmission power reaches 51.53 W. The energy transmission efficiency and transmission power achieved by the system can meet most of the usage requirements. The technology has broad application prospects in military and aerospace fields.
Keywords: ultrasonic;wireless power transmission;acoustic channel design;simultaneous conjugate impedance matching
2024, 50(4):90-96,108  收稿日期: 2022-02-11;收到修改稿日期: 2022-03-24
基金项目: 山西省基础研究面上项目(202303021221186);国家自然科学基金青年基金(62001430);国家重点研发计划(2019YFB2004800);山西省“1331工程”重点学科建设项目(1331KSC)
作者简介: 臧俊斌(1987-),男,山西忻州市人,博士研究生,研究方向为MEMS声学传感器件与系统集成测试。
参考文献
[1] ASMUSSEN R M, NEEWAY J J. The sporadic history of rubidium and its role in corrosion of steel related to nuclear material storage[J]. J Nuclear Materials, 2020, 530(37): 1-6
[2] FU X, JI Z, LIN W, et al. The advancement of neutron shielding materials for the storage of spent nuclear fuel[J]. Sci Technol Nucl Install, 2021, 2021(1): 1-13
[3] GRILLI M L, VALERINI D, SLOBOZEANU A E, et al. Critical raw materials saving by protective coatings under extreme conditions: A review of last trends in alloys and coatings for aerospace engine applications[J]. Materials (Basel), 2021, 14(7): 1-47
[4] KING F. Container materials for the storage and disposal of nuclear waste[J]. Corrosion, 2013, 69(10): 986-1011
[5] 胡溧, 何一鸣, 杨啟梁, 等. 蠕墨铸铁发动机缸体噪声辐射测试分析[J]. 中国测试, 2020, 46(2): 131-136
HU L, HE Y M, YANG Q L, et al. Measurement and analysis of noise radiation of vermicular cast iron engine block[J]. China Measurement & Test, 2020, 46(2): 131-136
[6] 王凯, 贺晓芳, 沈飞, 等. 超声波法测试固体火箭发动机燃速[J]. 中国测试, 2017, 43(8): 19-23
WANG K, HE X F, SHEN F, et al. Burning rate measurement of solid rocket motor by ultrasonic technology[J]. China Measurement & Test, 2017, 43(8): 19-23
[7] BUI, TUAN. Specific acoustic impedances of piezoelectric ceramic and polymer composites used in medical applications[J]. J Acoust Soc Am 1988, 83(6): 2416-2421
[8] 毛汉颖, 刘婷, 范健文, 等. 金属材料声发射信号传播的声阻抗特性研究[J]. 震动与冲击, 2019, 38(13): 197-214
MAO H Y, LIU T, FAN J W, et al. Sound impedance characteristics of metal material’s acoustic emission signal propagation[J]. Journal of Vibration and Shock, 2019, 38(13): 197-214
[9] BAO X, BIEDERMAN W, SHERRIT S, et al. High-power piezoelectric acoustic-electric power feedthru for metal walls[J]. Ind Commer Appl Smart Struct Technol, 2008, 6930: 1-8
[10] YANG H, WU M, YU Z, et al. An ultrasonic through-metal-wall power transfer system with regulated DC output[J]. Appl Sci, 2018, 8(5): 1-21
[11] LAWRY T. A high performance system for wireless transmission of power and data through solid metal enclosures[D]. New York: Rensselaer Polytechnic Institute, 2011: 30-59
[12] HU Y T, ZHANG X S, YANG J S, et al. Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers[J]. Ultrason Ferroelectr & Freq Control IEEE Trans. 2003, 50(7): 773–781.
[13] 胡元太, 陈传尧, 杨新华, 等. 两层压电换能器之间的电能传输[J]. 固体力学学报, 2003, 24(3): 304-312
HU Y T, CHEN C Y, YANG X H, et al. Electric energy transmission between two piezoelectric transducers[J]. Chinese Journal of Solid Mechanics, 2003, 24(3): 304-312
[14] SHERRIT S, DOTY B, BADESCU M, et al. Studies of acoustic-electric feed-throughs for power transmission through structures[C]//Conference on Industrial and Commercial Applications of Smart Structures Technologies, 2006.
[15] 王俊, 黄娟, 阎守国, 等. 超声无线输能通道的PSPICE等效电路研究[J]. 电子学报, 2018, 46(8): 1184-1890
WANG, HUANG J, YAN S G, et al. Research on PSPICE equivalent circuit of ultrasonic wireless energy transmission channel[J]. Acta Electronica Sinica, 2018, 46(8): 1184-1890
[16] 王俊, 张碧星, 黄娟. 超声无线输能的声电转换通道等效电路研究[C]//中国声学学会2017年全国声学学术会议, 2017.
[17] CHANG Z, BAO X, DOTY B, et al. Power loss consideration in wireless piezoelectric acoustic-electric power feedthru[J]. Proceedings of SPIE-The International Society for Optical Engineering. 2007, 6529(5): 652940-652940-7
[18] 王俊, 张敏, 张碧星, 等. 超声无线输能的声电转换通道设计[J]. 声学学报, 2020, 45(1): 117-123
WANG J, ZHANG M, ZHANG B X, et al. Design of acoustic-electronic conversion channel of ultrasonic wireless power transmission[J]. Acta Acustica, 2020, 45(1): 117-123
[19] SHOUDY D A, SAULNIER G J, SCARTON H A, et al. An ultrasonic through-wall communication system with power harvesting[C]//Proceedings of the IEEE Ultrasonics Symposium. New York, 2007.
[20] BAO X, DOTY B, SHERRIT S, et al. Wireless piezoelectric acoustic-electric power feedthru[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2007, 6529: 652940.
[21] BAO X, BIEDERMAN W, SHERRIT S, et al. High-power piezoelectric acoustic-electric power feed-thru for metal walls[C]//Ind Commer Appl Smart Struct Technol, 2008.
[22] 李璐. 超声无线电能传输系统功率传输特性及功率提升方法研究[D]. 重庆: 重庆大学, 2017.
[23] YANG H, WU M, YU Z, et al. An ultrasonic through-metal-wall power transfer system with regulated DC output[J]. Appl Sci, 2018, 8: 692
[24] https://www.ccndt.com.cn/goodsid/wenzhangview/219296.html
[25] RAHOLA J. Power waves and conjugate matching[C]//IEEE Trans  Circuits Syst II Express Briefs, 2008.
[26] LAWRY T, WILT K, ROA-PRADA S, et al. Electrical optimization of power delivery through thick steel barriers using piezoelectric transducers[J]. Energy Harvest Storage Mater Devices, Appl, 2010(7683): 1-12.