您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>管径尺寸偏差对超声流量计测量性能影响研究

管径尺寸偏差对超声流量计测量性能影响研究

126    2024-04-26

¥0.50

全文售价

作者:吕承泽1,2, 李梦娜2, 李春辉2, 谢代梁1

作者单位:1. 中国计量大学,浙江 杭州 310018;
2. 中国计量科学研究院,北京 100029


关键词:超声流量计;安装管道尺寸偏差;数值模拟;计量


摘要:

正确的安装是保证气体超声流量计测量准确度的前提。基于高压气体流量标准装置,在有、无管径尺寸偏差的安装条件下,对交叉4声道DN200口径超声流量计实验测量显示,在0.1~2 MPa压力,1.5~12 m/s流速范围内,8 mm安装管道正向尺寸偏差会带来0.22%的测量误差。为量化尺寸偏差对超声流量计测量结果的影响,采用数值模拟与实验测量相结合的方法,就不同尺寸偏差,压力及口径对超声流量计测量结果的影响进行系统研究。结果表明,正向尺寸偏差带来的测量误差几乎不受压力影响,负向尺寸偏差带来的测量误差随压力增加呈现从负误差到正误差的转变;尺寸偏差对测量结果影响随超声流量计口径减小而增大,3 mm尺寸偏差对DN50口径的声流量计测量结果影响可达0.20%。


Research on influence of pipe diameter size deviation on the measurement performance of ultrasonic flowmeter
Lü Chengze1,2, LI Mengna2, LI Chunhui2, XIE Dailiang1
1. China Jiliang University, Hangzhou 310018, China;
2. National Institute of Metrology, Beijing 100029, China
Abstract: Correct installation is the precondition to ensure the accuracy of gas ultrasonic flowmeter. Based on the high-pressure flow standard device, the test of ultrasonic flowmeter with cross 4-path is carried out under the conditions with and without installed pipe size deviation, within the velocity range of 1.5~12 m/s at pressure of 0.1~2 MPa. The results show that the measurement error is up to 0.10% which is resulted from the size deviation of 8mm. In order to quantitatively analyze the influence, the systemic research with the combination of numerical simulation and test is conducted with different size deviation, pressure and diameter of ultrasonic flowmeter. The results show that the influence of pressure on the measurement error can be ignored for the positive size deviation, and the results in the transition of measurement error from negative to positive for the negative size deviation with the increase of pressure. The influence of size deviation on the measurement results increases with the decrease of the diameter of ultrasonic flowmeter which can reach 0.20% for DN50 ultrasonic flowmeter with 3 mm size deviation.
Keywords: ultrasonic flowmeters;installed pipe size deviation;numerical simulation;metrology
2024, 50(4):45-52  收稿日期: 2022-03-25;收到修改稿日期: 2022-04-18
基金项目: 中国计量科学研究院基本科研业务重点领域项目(26-AKYZD2107-1)
作者简介: 吕承泽(1997-),男,黑龙江哈尔滨市人,硕士研究生,专业方向为气体流量计量。
参考文献
[1] LYNNWORTH L C, LIU Y. Ultrasonic flowmeters: half century progress report, 195522005[J]. Ultrasonics, 2006, 44: 137121378
[2] DRENTHEN J G, GEEUWKE D B. The manufacturing of ultrasonic gas flow meters [J]. Flow Measurement and Instrumentation. 2001, 12: 89299.
[3] 李跃忠, 李昌禧, 华志斌. 基于神经网络的多声道超声气体流量计研究[J]. 仪器仪表学报, 2007, 28(12): 2280-2284
LI Y Z, LI C X, HUA Z B. Research on multi-channel ultrasonic gas flow meter based on neural network[J]. Chinese Journal of Scientific Instrument, 2007, 28(12): 2280-2284
[4] SUN Y, ZHANG T, ZHENG D. New analysis scheme of flow-acoustic coupling for gas ultrasonic flowmeter with vortex near the transducer[J]. Sensors, 2018, 18(4): 1151
[5] 邱晓来. 国内外管法兰标准的技术发展[C]//:第六届全国阀门与管道学术会议论文集. 温州: 中国机械工程学会流体工程分会, 2009: 314-322.
QIU X L. Technical development of domestic and foreign pipe flange standards [C] //:Proceedings of the 6th National Conference on Valves and Pipelines. Wenzhou: Fluid Engineering Branch of China Society of Mechanical Engineering, 2009: 314-322.
[6] 超声流量计测量天然气: GB/T 18604-2014[S]. 北京: 中国标准出版社, 2014.
Measurement of natural gas using ultrasonic flow meters: GB/T 18604-2014 [S]. Beijing: Standard Press of China, 2014.
[7] 管道元件公称尺寸的定义与选用: GB∕T 1047-2019[S]. 北京: 中国标准出版社, 2019.
Definition and selection of nominal dimensions for pipeline components: GB/T 1047-2019 [S].Beijing: Standard Press of China, 2019.
[8] 陈文琳. 不同安装条件下涡街流量计流场特性的数值仿真研究[J]. 中国测试, 2019, 45(5): 110-115
CHEN W L. Numerical simulation of flow field characteristics of vortex flowmeter under different installation conditions[J].  China Measurement & Test, 2019, 45(5): 110-115
[9] 王雪峰, 唐祯安. 超声波气体流量计的管道模型仿真和误差分析[J]. 仪器仪表学报, 2009, 30(12): 2612-2618
WANG X F, TANG Z A. Pipeline model simulation and error analysis of ultrasonic gas flow meters[J]. Chinese Journal of Scientific Instrument, 2009, 30(12): 2612-2618
[10] 马良, 俞天阳, 田昌, 等. 狭窄流道内气体流速的三声道超声测量[J]. 中国测试, 2022, 48(5): 38-42
MA L, YU T Y, TIAN C, et al. Three-channel ultrasonic measurement of gas velocity in narrow channel[J]. China Measurement & Test, 2022, 48(5): 38-42
[11] 郑丹丹, 张朋勇, 孙立军, 等. 单弯管下游超声流量计的安装和测量性能研究[J]. 仪器仪表学报, 2010, 31(7): 1601-1607
ZHENG D D, ZHANG P Y, SUN L J, et al. Research on the installation and measurement performance of downstream ultrasonic flow meters with single bend pipes[J]. Chinese Journal of Scientific Instrument, 2010, 31(7): 1601-1607
[12] 超声流量计: JJG 1030-2007[S]. 北京: 中国标准出版社, 2007.
Ultrasonic flow meter: JJG 1030-2007 [S].Beijing: Standard Press of China, 2007
[13] 陈文琳, 丁昭. 汇管对气体超声流量计计量性能的影响[J]. 中国测试, 2021, 47(10): 161-168
CHEN W L, DING Z. Influence of header on measurement performance of ultrasonic gas flowmeter[J].  China Measurement & Test, 2021, 47(10): 161-168
[14] Measurement of fluid flow in closed conduits — Ultrasonic meters for gas — Part 1: Meters for custody transfer and allocation measurement : ISO 17089-1: 2019[S]. 2019.
[15] Measurement of Gas by Multipath Ultrasonic Meter: AGA Transmission Measurement Committee Report No. 9[S]. 1998.
[16] Field Acceptance Tests to Determine the Hydraulic Performance of Hydraulic turbines Storage Pumps and Pump Turbines: IEC60041[S]. 1991.
[17] Hydraulic turbines and pump-turbines performance test codes : PTC18-2002[S]. American Society of Mechanical Engineers, 2002.
[18] 代彬, 陈章淼, 周维. 基于Realizable k-epsilon模型的水闸下游水流数值模拟[J]. 水利与建筑工程学报, 2018, 16(4): 176-180
DAI B, CHEN Z M, ZHOU W. Numerical simulation of downstream water flow of a water gate based on the Realizable k-epsilon model[J]. Journal of Water Resources and Architectural Engineering, 2018, 16(4): 176-180