您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于Lin-GA的磁性示踪粒子六自由度检测技术

基于Lin-GA的磁性示踪粒子六自由度检测技术

384    2024-03-22

¥0.50

全文售价

作者:朱霈, 郭天太, 刘璐, 许新科, 孔明

作者单位:中国计量大学计量测试工程学院,浙江 杭州 310018


关键词:磁定位;空间信息反演;Lin-GA算法;TMR传感器


摘要:

针对基于永磁体和磁传感器阵列的磁定位系统中定位算法存在执行速度慢、定位精度低等问题,提出基于线性算法和遗传算法(linear algorithm-genetic algorithms, Lin-GA)的混合搜索算法。利用自制定位装置中的三轴隧道磁阻(TMR)传感器阵列采集磁性示踪粒子在空间产生的弱磁信号,首先通过线性算法利用磁场绝对向量信息进行粗定位,再利用遗传算法对示踪粒子的六自由度参数进行并行寻优,最终实现对磁性示踪粒子三维位置和三维方向的空间信息反演。实验结果表明,基于Lin-GA的混合搜索算法具有更高的定位精度和更短的执行时间,平均定位误差为(0.55±0.10) mm,平均定向误差为(0.68±0.30)°,平均执行时间为(30.49±4.89) s。


Six-degree-of-freedom detection technology of magnetic tracer particles based on Lin-GA
ZHU Pei, GUO Tiantai, LIU Lu, XU Xinke, KONG Ming
College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
Abstract: Aiming at the problems of slow execution speed and low positioning accuracy of positioning algorithm in magnetic positioning system based on permanent magnet and magnetic sensor array, a hybrid search algorithm based on linear algorithm - genetic algorithms (Lin-GA) is proposed. The three-axis tunnel magnetoresistance (TMR) sensor array in the self-made positioning device is used to collect the weak magnetic signal of the tracer particles. Firstly, the linear algorithm is used to roughly locate the magnetic field absolute vector information, and then the genetic algorithm is used to optimize the six degree of freedom parameters of the tracer particles in parallel. Finally, the inversion of the three-dimensional position and three-dimensional direction spatial information of the magnetic tracer particles is realized. The experimental results show that the hybrid search algorithm based on Lin-GA has higher positioning accuracy and shorter execution time. The average positioning error is (0.55 ± 0.10) mm, the average orientation error is (0.68 ± 0.30) °, and the average execution time is (30.49 ± 4.89) s.
Keywords: magnetic positioning;spatial information inversion;Lin-GA algorithm;TMR sensor
2024, 50(3):169-175  收稿日期: 2021-11-23;收到修改稿日期: 2022-03-22
基金项目:
作者简介: 朱霈(1996-),女,甘肃敦煌市人,硕士研究生,专业方向为精密仪器与测量技术。
参考文献
[1] LI S, ZHAO P, XU J, et al. Direct comparison of CFD-DEM simulation and experimental measurement of Geldart A particles in a micro-fluidized bed[J]. Chemical Engineering Science, 2021, 242: 116725
[2] 包加桐, 杨圣奥, 朱润辰, 等. 视觉与激光结合的室内移动机器人重定位方法[J]. 中国测试, 2021, 47(11): 1-7+20
BAO J T,   YANG S A ,   ZHU R C,et al. Relocation method for indoor mobile robot by combining vision and laser[J]. China Measurement& Test, 2021, 47(11): 1-7+20
[3] KOBAYASHI Y, IWATA T. Nitrogen and phosphorus dynamics in a large river estimated by an in situ Lagrangian tracking approach[J]. Freshwater Biology, 2017, 62(12): 1997-2007
[4] HAN L, KAMALANATHAN P, Al-DAHHAN M. Study of the detailed catalyst hydrodynamics using radioactive particle tracking technique in a mimicked Fischer-Tropsch slurry bubble column[J]. Chemical Engineering Science, 2021, 241: 116659
[5] SOMMER A. E, ORTMANN K, VAN HEERDEN M, et al. Application of Positron Emission Particle Tracking (PEPT) to measure the bubble-particle interaction in a turbulent and dense flow[J]. Minerals Engineering, 2020, 156: 106410
[6] UMAY I, FIDAN B. Adaptive wireless biomedical capsule tracking based on magnetic sensing[J]. International Journal of Wireless Information Networks, 2017, 24(2): 189-199
[7] 庄衡衡, 丁飞, 章华涛, 等. 五自由度机器人运动控制与空间位姿仿真系统[J]. 中国测试, 2021, 47(11): 14-20
ZHUANG H H,   DING F,   ZHANG H T,et al. Motion control and spatial pose simulation system of 5-DOF robot[J]. China Measurement & Test, 2021, 47(11): 14-20
[8] TAO X, TU X, WU H. A new development in magnetic particle tracking technology and its application in a sheared dense granular flow[J]. Rev. Sci. Instrum. , 2019, 90(6).
[9] SCHLAGETER V, BESSE P, POPOVIC R S, et al. Tracking system with five degrees of freedom using a 2D-array of Hall sensors and a permanent magnet[J]. Sens. Actuator A Phys, 2001, 92(1): 37-42
[10] 牛德森, 陈晓冬, 杜承阳, 等. 高动态精度抗磁干扰胶囊内镜定位方法[J]. 激光与光电子学进展, 2017, 54: 061701
NIU D S, CHEN X D, DU C Y, et al. High dynamic precision anti magnetic interference capsule endoscopic localization method[J]. Laser & Optoelectronics Progress, 2017, 54: 061701
[11] 成龙, 郑建立. 基于FPGA的磁定位技术研究与实现[J]. 软件导刊, 2019, 18(7): 145-149
CHEN L, ZHENG J L. Research and implementation of magnetic positioning technology based on FPGA[J]. Software Guide, 2019, 18(7): 145-149
[12] HU C, MENG Q H, MANDALI M. A Linear Algorithm for Tracing Magnet Position and Orientation by Using Three-Axis Magnetic Sensors[J]. IEEE Trans. Magn., 2007, 43(12): 4096-4101
[13] HU C, ZHANG Z, QIU J, et al. A full span magnetic localization algorithm[J]. International Conference on Robotics and Biomimetics, 2019, 12: 2357-2362
[14] TAO X, WU H. A Comparison of the sequential quadratic programing algorithm and extended kalman filter method in the magnetic particle tracking reconstruction[J]. AIAA Scitech 2019 Forum, 2019:2514.
[15] 祝强, 李少康, 徐臻. LM算法求解大残差非线性最小二乘问题研究[J]. 中国测试, 2016, 42(3): 12-16
ZHU Q, LI S K, XU Z. Research on LM algorithm for solving large residual nonlinear least squares problems[J]. China Measurement& Test, 2016, 42(3): 12-16
[16] 孙赫轩, 裴东兴, 祗会强, 等. 基于磁梯度张量与Levenberg-Marquardt优化的磁矩计算方法[J]. 传感技术学报, 2021, 34(1): 64-69
SUN H X, PEI D X, ZHI H Q, et al. A magnetic moment calculation method based on magnetic gradient tensor and Levenberg Marquardt optimization[J]. Journal of Transduction Technology, 2021, 34(1): 64-69
[17] 戴忠华, 张晓兵, 周穗华. 舰船磁场磁偶极子阵列建模与分析[J]. 磁性材料及器件, 2021, 52(6): 54-59.
DAI Z H, ZHANG X B, ZHOU S H. Modeling and analysis of magnetic dipole array for ship magnetic field[J]. Journal of Magnetic Materials and Devices, 2021, 52(6): 54-59.
[18] 黄玉杨, 黄咏梅. 基于遗传算法的涡街信号随机共振检测方法[J]. 中国测试, 2021, 47(4): 101-106
HUANG Y Y,   HUANG Y M. Stochastic resonance detection method of vortex signal based on genetic algorithm[J]. China Measurement& Test, 2021, 47(4): 101-106
[19] KRAMER O. Genetic algorithms[J]. Studies in Computational Intelligence, 2017(679): 11-19
[20] MIRJALILI S. Genetic algorithm[J]. Evolutionary algorithms and neural networks, 2019: 43-55.