您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>变电站内SF6分解物检测追踪系统设计

变电站内SF6分解物检测追踪系统设计

110    2024-03-22

¥0.50

全文售价

作者:王建邦, 喇元

作者单位:南方电网数字电网集团有限公司,广东 广州 510000


关键词:SF6分解气体;烟羽追踪;电子鼻;模拟退火算法;泄漏检测


摘要:

六氟化硫(SF6)气体分解与泄漏现象日趋严重,给电气设备的绝缘性能带来了严重的负面影响,甚至对电气设备在运行过程中的安全性产生了极大的威胁。为快速有效地对SF6气体的分解物(二氧化硫SO2、硫化氢H2S等)进行检测并定位泄露源,该研究基于高级精简指令集计算机(advanced RISC machine, ARM)控制器设计了可以检测以上两种主要有毒气体的电子鼻系统。接着以模拟退火算法为基础,提出气体烟羽追踪方法,旨在解决气体泄露源定位问题。气体浓度检测实验表明,相比MX6商业电子鼻,该文自制的电子鼻系统的气体浓度检测相对误差在0.7 ×10–6以内,可以有效地检测以上两种有毒气体。此外,考虑到以上气体具有毒性,以乙醇气体为气味源进行了气体烟羽追踪实验。结果表明,该文所提出算法的有效性和实时性较好,平均定位误差只有0.63 m。以上实验证明该设计的电子鼻及模拟退火算法能够满足移动机器人进行SF6分解气体泄漏检测的应用需求。


Design of SF6 decomposition gas plume detection and tracking system in substation
WANG Jianbang, LA Yuan
China Southern Power Grid Digital Group Co., Ltd., Guangzhou 510000, China
Abstract: The decomposition and leakage of sulfur hexafluoride (SF6) gas is becoming more and more serious in recent years, which will reduce the insulation performance of electrical equipment and endanger its safe operation. To quickly and effectively detect the decomposition products (sulfur dioxide SO2, hydrogen sulfide H2S) of SF6 gas and locate the leak source, this research designed an electronic nose system (e-nose) based on the Advanced RISC Machine (ARM) controller that can detect these two toxic gases. Subsequently, aiming at the problem of locating the source of gas leak, this research designed a gas plume tracking method based on simulated annealing algorithm. Gas concentration detection experiments show that, compared with the MX6 commercial e-nose, the relative error of the gas concentration detection of the self-made e-nose in this paper is within 0.7 ×10–6, which can effectively detect the above two toxic gases. In addition, considering that the above gases are toxic, this paper uses ethanol gas as the odor source to conduct gas plume tracking experiments. The proposed method has high effectiveness and timeliness, shown by results, with an average positioning error of 0.63 m. The above experiments demonstrate that the designed e-nose and simulated annealing algorithms can meet the application requirements of mobile robots for SF6 decomposition gas leak detection.
Keywords: SF6 decomposition gas;plume tracking;electronic nose;simulated annealing algorithm;leak detection
2024, 50(3):144-151  收稿日期: 2023-06-04;收到修改稿日期: 2023-08-12
基金项目: 中国南方电网有限责任公司重点研究项目(JY-JF-01-SG-21-008)
作者简介: 王建邦(1989-),男,工程师,硕士,研究方向为变电站自动化、电力设备智能化方面的研究。
参考文献
[1] 王辉, 李晓军, 李舟. SF6电气设备绝缘故障诊断用SO2, H2S气体传感器研究进展[J]. 高压电器, 2019, 8: 1-9.
WANG H, LI X J, LI Z. Research progress of SO2 and H2S gas sensors for insulation fault detection of SF6 electrical equipment[J]. High Voltage Apparatus, 2019, 8: 1-9.
[2] 刘克成, 张立军, 石荣雪, 等. WO3气体传感器用于SF6分解气体H2S的检测[J]. 仪表技术与传感器, 2019, 8: 21-23.
LIU K C, ZHANG L J, SHI R X, et al. WO3 gas sensor for detection of SF6 decomposition gas H2S[J]. Instrument Technique and Sensor, 2019, 8: 21-23.
[3] 窦小晶, 叶日新, 付纪华, 等. SF6气体分解产物检测技术及其应用的研究现状[J]. 电网与清洁能源, 2019, 35(7): 24-31.
DOU X J, YE R X, FU J H, et al. Research status of SF6 gas decomposition products detection methods and their application[J]. Power System and Clean Energy, 2019, 35(7): 24-31.
[4] 刘劲松, 禹晋云, 王飞, 等. 变电站SF6泄漏检测与智能机器人应用结合[J]. 信息技术, 2020, 1: 54-57.
LIU J S, YU J Y, WANG F, et al. Combination of substation SF6 leak detection and substation intelligent robot application[J]. Information Technology, 2020, 1: 54-57.
[5] 田忠, 常敏, 金海勇, 等. GIS设备内SF6气体泄漏检测技术创新研究[J]. 粘接, 2023, 50(1): 192-196.
TIAN Z, CHANG M, JIN H Y, et al. Innovative research on SF6 gas leakage detection technology in GIS equipment[J]. Adhesion, 2023, 50(1): 192-196.
[6] 郑服利, 林艺. 一种数字式SF6和氧气浓度气体检测仪的研制与应用[J]. 微计算机信息, 2021, 011: 170-171.
ZHENG F L, LIN Y. Development and application of a digital SF6 and oxygen concentration gas detector[J]. Microcomputer Information, 2021, 011: 170-171.
[7] 陈图南, 马凤翔, 袁小芳, 等. SF6气体绝缘电气设备故障分解物检测的多组分交叉干扰及校正算法综述[J]. 电工电能新技术, 2021, 40(1): 12.
CHEN T N, YU J Y, YUAN W F, et al. Overview of multicomponent cross interference and correction algorithms for fault decomposition detection of SF6 gas insulated electrical equipment[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(1): 12.
[8] LI S Y, ZHANG J J, YAN D, et al. Leak detection and location in gas pipelines by extraction of cross spectrum of single non-dispersive guided wave modes[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 255-262.
[9] LUO B, MENG Q H, WANG J Y, et al. A flying odor compass to autonomously locate the gas source [J]. IEEE Transactions on Instrumention and Measurement. 2018, 67(1): 137–149.
[10] NEUMANN P, ASADI S, LILIENTHAL A , et al. Autonomous gas–sensitive microdrone: wind vector estimation and gas distribution mapping[J]. IEEE Robotics and Automation Magazine. 2012, 19(1): 50–61.
[11] ZHANG Y L, MA X P, MIAO Y Z. Localization of multiple odor sources using modified glowworm swarm optimization with collective robots[C]//30th Chinese Control Conference (CCC), 2011.
[12] SCHMUKER M, BAHR V, HUERTA R. Exploiting plume structure to decode gas source distance using metal-oxide gas sensors[J]. Sensors and Actuators B- Chemical, 2016, 235: 636-646.
[13] VUKA M, AMIGONI F, SCHMUKER M, et al. Exploration andlocalization of a gas source with MOX gas sensors on a mobile robot—a gaussian regression bout amplitude approach[C]//Proc. Int. Symp. Olfaction Electron. Nose (ISOEN), 2017.