您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>辉光放电质谱法测定合金钢中各元素的相对灵敏度因子

辉光放电质谱法测定合金钢中各元素的相对灵敏度因子

96    2024-03-22

¥0.50

全文售价

作者:汤云腾

作者单位:中国科学院海西研究院厦门稀土材料研究中心,福建 厦门 361021


关键词:辉光放电质谱法;合金钢;相对灵敏度因子


摘要:

采用辉光放电质谱法(GDMS)分析合金钢中元素相对灵敏度因子(RSF),优化放电电流、气体流量和预溅射时间等条件,排除质谱干扰并选定合适同位素。研究不同放电条件对元素RSF的影响,并比较不同基体下RSF的差异。通过合金钢标准样品建立回归曲线,获得校正后的相对灵敏度因子(RSFsteel),用于定量分析。结果表明,放电气体流量是元素RSF的主要影响因素,轻元素RSF随放电气体流量增加而减小,重元素RSF随放电气体流量增加而增大。合金钢基体下的大部分元素RSF小于其标准RSF,经RSFsteel校正的测量值与参考值间的相对偏差低于10%,相对标准偏差(RSD)小于5%,准确度和精密度良好。


Determination of relative sensitivity factors of elements in alloy steel by glow discharge mass spectrometry
TANG Yunteng
Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
Abstract: This paper describes an analytical method to determine the relative sensitivity factors (RSF) of elements in alloy steel by GDMS. The parameters, such as discharge current, gas flow rate and pre-sputtering time were optimized. Also, The mass interferences were investigated and suitable isotopes were selected for analysis. The effects of different discharge conditions on RSF were studied and the differences of RSF between different substrates were compared. The relative sensitivity factors (RSFsteel) obtained by the regression curves established by alloy steel standard samples were used for quantitative analysis. The results showed that the main influence factor of RSF was gas flow rate. With the increase of gas flow rate, RSFs of light elements decreased, but RSFs of heavy elements increased. RSFs of most elements in alloy steel matrix were less than their standard RSFs. Relative deviations between the corrected values and the reference values were less than 10% and the relative standard deviations (RSDs) of most elements were less than 5%. The accuracy and precision were in good agreement.
Keywords: glow discharge mass spectrometry (GDMS);alloy steel;relative sensitivity factors
2024, 50(3):84-89  收稿日期: 2021-11-27;收到修改稿日期: 2022-02-07
基金项目:
作者简介: 汤云腾(1989-),男,福建漳州市人,工程师,硕士,从事材料成分分析研究。
参考文献
[1] 钱荣, 卓尚军, 董疆丽, 等. 辉光放电质谱理论与应用[M]. 上海: 上海科学技术出版社, 2018.
[2] 刘英波, 杨海岸, 罗 舜, 等. 辉光放电质谱法测定高纯锡中15种痕量杂质元素[J]. 云南冶金, 2018, 47(6): 72-77.
LIU Y B, YANG H A, LUO S, et al. The determination on trace impurity element in high purity zinc byglow -discharge mass spectrometry[J]. Yunnan Metallurgy, 2018, 47(6): 72-77.
[3] 汤云腾, 张其凯, 宋立军. 辉光放电质谱法测定钨钛合金中的微量杂质元素[J]. 分析试验室, 2021, 40(10): 1223-1226.
TANG Y T, ZHANG Q K, SONG L J. Determination of trace impurity elements in tungsten-titanium alloy by glow discharge mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2021, 40(10): 1223-1226.
[4] 杨赟金, 杨海岸. GD-MS法测定太阳能级多晶硅中痕量杂质元素含量[J]. 云南冶金, 2015, 44(4): 69-72.
YANG Y J, YANG H A. Determination on the trace impurity elements content in solar grade silicon by GD-MS method[J]. Yunnan Metallurgy, 2015, 44(4): 69-72.
[5] HOFFMANN V, KASIK M, ROBINSON P K, et al. Glow discharge mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2005, 381: 173-188.
[6] GUSAROVA T, HOFMANN T, KIPPHARDT H, et al. Comparison of different calibration strategies for the analysis of zinc and other pure metals by using the GD-MS instruments VG 9000 and Element GD[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3): 314-321.
[7] 唐一川, 周涛, 徐常昆. 辉光放电质谱测量中的相对灵敏度因子研究[J]. 分析测试学报, 2012, 31(6): 664-669.
YANG Y C, ZHOU T, XU C K. Determination of relative sensitivity factors of impurities in poly-silicon by derect current glow discharge mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2012, 31(6): 664-669.
[8] 刘洁, 钱荣, 斯琴毕力格, 等. 直流辉光放电质谱法测定多晶硅中关键杂质元素的相对灵敏度因子[J]. 分析化学, 2012, 40(1): 66-71.
LIU J, QIAN R, SIQIN B, et al. Determination of relative sensitivity factors of impurities in poly-silicon by derect current glow discharge mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2012, 40(1): 66-71.
[9] 李继东, 王长华, 郑永章. 铝合金中微量元素辉光放电质谱定量分析研究[J]. 质谱学报, 2012, 33(1): 18-22.
LI J D, WANG C H, ZHENG Y Z. The quantitative analysis for microelement content in alumina alloys by glow discharge mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society , 2012, 33(1): 18-22.
[10] 魏兴俭, 王丽萍, 秦震, 等. 辉光放电质谱法相对灵敏度因子影响因素研究[J]. 质谱学报, 2016, 37(4): 343-350.
WEI X J, WANG L P, QIN Z, et al. Study on impact basics of relative sensitivity factors of glow discharge mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(4): 343-350.
[11] 余兴, 李小佳, 王海舟. 辉光放电质谱法测定中低合金钢中18种元素[J]. 冶金分析, 2006, 26(5): 1-7.
YU X, LI X J, WANG H Z. Determination of eighteen elements in middle-low alloy steel by glow discharge mass spectrometry[J]. Metallurgical Analysis , 2006, 26(5): 1-7.
[12] 王梓任, 王长华, 胡芳菲, 等. 辉光放电质谱法直接分析石墨中痕量杂质[J]. 光谱学与光谱分析, 2019, 39(4): 1256-1261.
WANG Z R, WANG C H, HU F F, et al. Quantification of trace impurities in graphite by glow discharge mass spectrometry[J]. Spectroscopy and Spectral Analysis, 2019, 39(4): 1256-1261.
[13] 黄瑾, 郭斌斌, 郑清洪. 辉光放电质谱法测定氧化铟锡靶材中的元素含量[J]. 分析试验室, 2016, 35(7): 765-768.
HUANG J, GUO B B, ZHENG Q H. Impurities concentration detection in ITO target by glow discharge mass spectrometry[J]. Chinese Journal of Analysis Laboratory , 2016, 35(7): 765-768.
[14] 刘攀, 李治亚, 杜米芳, 等. 石墨炉-原子吸收法测定非合金钢和低合金钢中痕量铅[J]. 中国测试, 2021, 47(7): 55-59.
LIU P, LI Z Y, DU M F, et al. Determination of trace lead content in non-alloy steel and low-alloy steel by graphite furnace atomic absorption spectrometry[J]. China Measurement & Test, 2021, 47(7): 55-59.