您好,欢迎来到中国测试科技资讯平台!

首页> 数字期刊群 >本期导读>基于迁移学习的异步电机故障诊断

基于迁移学习的异步电机故障诊断

495    2023-08-15

免费

全文售价

作者:张二虎

作者单位:中国飞行试验研究院, 陕西 西安 710089


关键词:异步电机;故障诊断;迁移学习;深度学习网络


摘要:

针对异步电机故障诊断中,故障数据样本少导致传统深度神经网络模型泛化能力差的问题,提出一种异构迁移学习的异步电机故障诊断算法。首先,通过仿真平台模拟异步电机故障,以解决故障数据样本少的问题;其次,对正常和故障状态下的电流电压信号进行小波变换,作为深度学习网络的输入;然后,基于多核最大平均差异方法,获得仿真数据和实测数据的深度特征差异,对深度学习神经网络参数微调,使其深度学习特征具有跨域不变性。最终,在实验平台上验证文中所提算法,实验结果表明,该算法的故障诊断准确率高,依赖实测故障数据样本少。


Research on fault diagnosis algorithm of asynchronous induction motor based on transfer learning
ZHANG Erhu
Chinese Flight Test Establishment, Xi'an 710089, China
Abstract: In the fault diagnosis of asynchronous induction motor, a fault diagnosis algorithm for asynchronous induction motor based on heterogeneous migration learning is presented, to solve the problem of poor generalization ability of traditional deep neural network model, due to the small number of fault data samples. Firstly, the fault of asynchronous induction motor is simulated to solve the problem of fewer fault data samples. Secondly, the current and voltage signals in normal and failure state are transformed by wavelet transformation as input of deep learning network. Then, based on the multicore maximum average difference method, the difference of depth characteristics between simulated and measured data is obtained, and the parameters of the deep learning neural network are fine-tuned to make its deep learning characteristics cross-domain invariant. Finally, the proposed algorithm is validated on the experimental platform. The results show that the algorithm has high accuracy in fault diagnosis and fewer samples depending on the measured fault data.
Keywords: asynchronous induction motor;fault diagnosis;transfer learning;deep learning network
2023, 49(5):137-144  收稿日期: 2023-02-01;收到修改稿日期: 2023-03-15
基金项目:
作者简介: 张二虎(1985-),男,陕西礼泉县人,高级工程师,硕士,主要从事航空维修、故障诊断技术研究
参考文献
[1] CHOUDHARY A, GOYAL D, SHIMI S L, et al. Condition monitoring and fault diagnosis of induction motors: A review[J]. Archives of Computational Methods in Engineering, 2019, 26(4): 1221-1238
[2] LIANG X, ALI M Z, ZHANG H. Induction motors fault diagnosis using finite element method: a review[J]. IEEE Transactions on Industry Applications, 2019, 56(2): 1205-1217
[3] GANGSAR P, TIWARI R. Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review[J]. Mechanical systems and signal processing, 2020, 144: 106908
[4] ASAD B, VAIMANN T, BELAHCEN A, et al. Broken rotor bar fault diagnostic of inverter fed induction motor using FFT, Hilbert and Park's vector approach[C]//2018 XIII International Conference on Electrical Machines (ICEM). IEEE, 2018: 2352-2358.
[5] 张雅晖, 杨凯, 李天乐. 一种利用融合相关谱的异步电机故障诊断方法[J]. 电机与控制学报, 2021, 25(11): 1-7
[6] 许伯强, 何俊驰, 孙丽玲. 基于SAE与改进LightGBM算法的笼型异步电机故障诊断方法[J]. 电机与控制学报, 2021, 25(8): 29-36
[7] GU B G. Offline interturn fault diagnosis method for induction motors by impedance analysis[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5913-5920
[8] DE PELEGRIN J, DREYER U J, BAZZO J P, et al. Faults diagnosis in induction motors through thermal mapping produced by the rdts system[J]. IEEE Sensors Journal, 2021, 21(18): 20061-20068
[9] LOPEZ-RAMIREZ M, RODRIGUEZ-DONATE C, LEDESMA-CARRILLO L M, et al. Walsh–Hadamard domain-based intelligent online fault diagnosis of broken rotor bars in induction motors[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-11
[10] TRAN M Q, LIU M K, TRAN Q V, et al. Effective fault diagnosis based on wavelet and convolutional attention neural network for induction motors[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71: 1-13
[11] 许孝卓,高亚召,杜宝玉,等. 永磁开关磁链直线电机退磁故障特性分析[J]. 磁性材料及器件, 2022, 53(3): 64-68
[12] ABID F B, SALLEM M, BRAHAM A. Robust interpretable deep learning for intelligent fault diagnosis of induction motors[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(6): 3506-3515
[13] ZHAO X, JIA M, DING P, et al. Intelligent fault diagnosis of multichannel motor–rotor system based on multimanifold deep extreme learning machine[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(5): 2177-2187
[14] HOANG D T, KANG H J. A motor current signal-based bearing fault diagnosis using deep learning and information fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(6): 3325-3333
[15] SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Netw, 2015(61): 85-117
[16] LI C, ZHANG S, QIN Y, et al. A systematic review of deep transfer learning for machinery fault diagnosis[J]. Neurocomputing, 2020, 407: 121-135
[17] QIAN Q, QIN Y, WANG Y, et al. A new deep transfer learning network based on convolutional auto-encoder for mechanical fault diagnosis[J]. Measurement, 2021, 178: 109352
[18] 杨健, 李立新, 廖晨茜, 等. 面向滚动轴承故障诊断的改进对抗迁移学习算法研究[J]. 中国测试, 2021, 47(9): 15-19+40
[19] 葛天天, 於锋, 刘兴. 多相电驱重构型车载充电系统绕组开路故障诊断与容错控制[J]. 电子测量技术, 2022, 45(20): 15-20