您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>非织造材料厚度均匀性在线检测系统开发

非织造材料厚度均匀性在线检测系统开发

852    2023-07-27

免费

全文售价

作者:吴飞斌

作者单位:泉州装备制造研究所,福建 泉州 362000


关键词:非织造材料;光电检测;厚度均匀性;小波变换;降噪算法


摘要:

针对非织造产品生产过程中受到材料本身松软、表面毛刺及外界环境因素的影响而难以实时在线检测其厚度及均匀性的技术难题,该文利用非织造材料无纺汽车地毯生产线作为研究对象,开发一套非织造材料厚度均匀性在线检测系统。利用激光位移传感器实现非接触式实时检测,开发多通道数据采集模块以实现多个测量点的同步数据采集,提出一种基于小波变换的降噪算法有效降低因材料自身属性及环境因素造成的随机误差,开展厚度及其均匀性数据处理分析算法研究从而实现快速准确检测。实验测试结果验证所开发系统的测量准确性,为非织造材料的生产工艺提升及质量控制提供一种新方法。


Development of on-line measurement system for thickness uniformity of nonwovens
WU Feibin
Quanzhou Institute of Equipment Manufacturing, Quanzhou 362000, China
Abstract: In order to solve the technical problem that thickness and uniformity of nonwoven products are difficult to be measured online in real time due to the soft material, surface burr and external environmental factors, this paper developed an online measurement system for thickness uniformity of nonwoven materials using nonwoven automotive carpet production line as the research object. The non-contact real-time detection is realized by using laser displacement sensors. A multi-channel data acquisition module is developed to realize synchronous data acquisition of multiple measurement points. A noise reduction algorithm based on wavelet transform is proposed to effectively reduce random errors caused by material properties and environmental factors, and the thickness and uniformity data processing and analysis algorithm is researched to achieve rapid and accurate detection. The experimental test results verify the measurement accuracy of the developed system, and provide a new method for the production process improvement and quality control of nonwoven materials.
Keywords: nonwovens;photoelectric detection;thickness uniformity;wavelet transform;noise reduction algorithm
2023, 49(7):112-117  收稿日期: 2022-06-09;收到修改稿日期: 2022-08-04
基金项目: 福建省科技计划项目(2019T3025,2021T3060,2021T3032,2021T3010)
作者简介: 吴飞斌(1989-),男,福建泉州市人,高级工程师,硕士,主要研究方向为光学检测
参考文献
[1] 杨旭红. 非织造材料基本结构特征的表达[J]. 纺织导报, 2004(4): 16-19
[2] GODEHARDT M, MOGHISEH A, OETJEN C, et al. Assessing cloudiness in nonwovens[C]// FILTECH 2022 Conference, 2022.
[3] 陆蓥. 基于石墨烯的柔性非织造材料应变传感器的设计及其传感性能研究[D]. 杭州: 浙江理工大学, 2021.
[4] MINAEVA E D, KURYANOVA A S, DULYASOVA A A, et al. Laser technology of directional microstructuring of biodegradable nonwovens[J]. High Energy Chemistry, 2022, 56(2): 138-144
[5] 赵亮, 熊思维, 彭家顺, 等. 柔性非织造布和玻璃纤维布叠层热压制备玻璃纤维布/聚苯硫醚复合板材[J]. 复合材料学报, 2018, 35(12): 3253-3260
[6] 杨云. 基于机器视觉的非织造材料厚度均匀性检测系统的研究[D]. 武汉: 武汉纺织大学, 2011.
[7] 纺织品 非织造布试验方法 第2部分: 厚度的测定: GB/T 24218.2—2009[S]. 北京: 中国质检出版社, 2009.
[8] 温州际高检测仪器有限公司. 产品中心[EB/OL]. [2022-06-15]. http://www.jigaotest.com/index.php.
[9] 浙江三工匠仪器有限公司, 产品中心[EB/OL]. [2022-06-15]. http://www.sgjyq.com.
[10] MAYER F P. German machinery: Nonwovens and technical textiles[J]. Textile World, 2009, 159(3): 26-29
[11] 陈岳飞, 徐学林, 朱美娜, 等. 国家现代先进测量体系的基本内涵、生成逻辑及实现路径[J]. 中国测试, 2021, 47(2): 1-5
[12] PEIPONEN K-E, MYLLYLA R, PRIEZZHEV A V. 光学测量技术: 工业与生命科学领域的革新[M]. 陈世同, 徐博, 译. 北京: 国防工业出版社, 2016: 57-86.
[13] 张科鹏. 基于散射测量的光学元件表面质量评估方法研究[D]. 北京: 中国科学院大学, 2019.
[14] 胡广书. 现代信号处理教程[M]. 北京: 清华大学出版社, 2004.