您好,欢迎来到中国测试科技资讯平台!

首页> 数字期刊群 >本期导读>高盐废水中硅的形态定性识别及定量分析

高盐废水中硅的形态定性识别及定量分析

538    2023-04-20

免费

全文售价

作者:陈传敏1, 贾文瑶1, 刘松涛1, 党小梅1, 瞿子涵2, 蔡萱2

作者单位:1. 华北电力大学(保定)环境科学与工程系,河北 保定 071003;
2. 国网湖北省电力有限公司电力科学研究院,湖北 武汉 430000


关键词:高盐废水;硅形态;分光光度法;定性识别;定量分析


摘要:

在工业高盐废水的排放处理过程中,废水中存在的硅元素会导致硅垢产生,产生的硅垢质地坚硬,很难清洗,严重影响废水处理效率及系统运行。为提高废水处理过程中的除硅效率,优化除硅工艺流程,需要对高盐废水中硅元素的存在形态及含量进行测试,选择合适的除硅方法及除硅药剂。分别使用硅钼黄分光光度法和硅钼蓝分光光度法对某水处理脱盐段反渗透浓盐水中的硅含量进行测试,并对两方法进行精密度分析,结果表明,当测定硅含量小于5 mg/L的水样时,硅钼蓝分光光度法的精确度略高于硅钼黄分光光度法。当测定硅含量大于50 mg/L的水样时,硅钼黄分光光度法的精确度明显高于硅钼蓝分光光度法,方法RSD小于1%,并且硅钼黄法更为简便。选用硅钼黄分光光度法进行硅元素形态的定性识别及定量分析,测试结果表明,全硅含量为138.82 mg/L,活性硅含量为79.89 mg/L。并把高盐废水中硅元素的存在形态分为3种,即Sia(单硅酸和二聚硅酸)、Sib(低聚硅酸)、Sic(高聚硅酸及非活性硅),含量分别为72.57 mg/L、7.32 mg/L、58.93 mg/L。


Qualitative identification and quantitative analysis of the form of silicon in high-salt wastewater
CHEN Chuanmin1, JIA Wenyao1, LIU Songtao1, DANG Xiaomei1, QU Zihan2, CAI Xuan2
1. School of the Environmental Science and Engineering, North China Electric Power University(Baoding), Baoding 071003, China;
2. State Grid Hubei Electric Power Research Institute, Wuhan 430000, China
Abstract: In the process of the discharge of industrial high-salt wastewater, the silicon element in the wastewater will result in the production of silica scale. And difficulty of removing silica scale seriously affects the efficiency of wastewater treatment and the operation of the system. In order to improve the efficiency of silicon removal in the wastewater treatment process and optimize the silicon removal process, it is necessary to test the presence state and content of silicon in high-salt wastewater, and choose appropriate silicon removal methods and silicon removal agents. Silicon-molybdenum yellow spectrophotometry and silicon-molybdenum blue spectrophotometry were used to test the silicon content in reverse osmosis concentrated brine in a water treatment desalination section, and the precision analysis of the two methods showed that when the silicon content of water samples was less than 5 mg/L, the precision of the silicon-molybdenum blue spectrophotometry is slightly higher than that of the silicon-molybdenum yellow spectrophotometry. When the silicon content of water samples was more than 50 mg/L, the precision of the silicon-molybdenum yellow spectrophotometry is obviously higher than that of the silicon-molybdenum blue spectrophotometry, the relative standard deviation is less than 1%, and this method is more convenient. The silicon-molybdenum yellow spectrophotometric method is used for the qualitative identification and quantitative analysis of silicon form. And the results indicated that the total silicon content was 138.82 mg/L and the active silicon content was 79.89 mg/L. And the existence of silicon in high-salt wastewater was divided into three types, namely Sia (monosilicic acid and dimeric silicic acid), Sib (oligosilicic acid), and Sic (high-polysilicic acid and inactive silicon), whose contents were 72.57 mg/L, 7.32 mg/L, and 58.93 mg/L, respectively.
Keywords: high-salt wastewater;silica form;spectrophotometry;qualitative identification;quantitative analysis
2023, 49(2):87-92  收稿日期: 2021-04-21;收到修改稿日期: 2021-07-18
基金项目: 国家电网有限公司科技项目(5500-202022425A-0-0-00)
作者简介: 陈传敏(1973-),男,河南民权县人,教授,博士,主要从事燃煤电厂末端废水处理技术方面的研究
参考文献
[1] LU K, LÜ Y, BAI Y X, et al. Experimental investigation and theoretical modeling on scale behaviors of high salinity wastewater in zero liquid discharge process of coal chemical industry[J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 969-979
[2] HUANG L, WANG D L, HE C, et al. Industrial wastewater desalination under uncertainty in coal-chemical eco-industrial parks[J]. Resources, Conservation and Recycling, 2019, 145: 370-378
[3] 黄芷君, 龚婷婷, 鲜啟鸣. 燃烧裂解-离子色谱法测定工业废水中的可吸附有机卤素[J]. 中国测试, 2021, 47(1): 62-67
[4] 韦聪, 李磊, 吕文英, 等. 工业废水CODCr测定方法与技术发展过程分析[J]. 中国测试, 2017, 43(7): 1-9
[5] LIU Q, XU G R, DAS R. Inorganic scaling in reverse osmosis (RO) desalination: Mechanisms, monitoring, and inhibition strategies[J]. Desalination, 2019(468): 114065
[6] 党平, 赛世杰, 张娜, 等. 偏铝酸钠去除高盐废水中二氧化硅的试验研究[J]. 工业水处理, 2019, 39(7): 74-76
[7] PARK Y M, YEON K M, PARK C H. Silica treatment technologies in reverse osmosis for industrial desalination: A review[J]. Environmental Engineering Research, 2020, 25(6): 819-829
[8] LATOUR I, MIRANDA R, BLANCO A. Silica removal with sparingly soluble magnesium compounds Part II[J]. Separation and Purification Technology, 2015(149): 31-338
[9] ZHANG P, PABSTMANN A, GRAY S, et al. Silica fouling during direct contact membrane distillation of coal seam gas brine with high sodium bicarbonate and low hardness[J]. Desalination, 2018(444): 107-117
[10] 杜聪, 阿柔娜, 包仓, 等. 硅酸水垢及防治方法研究进展[J]. 工业水处理, 2017, 37(10): 6-10
[11] TAYLOR P D, JUGDAOHSINGH R, POWELL J J. Soluble silica with high affinity for aluminum under physiological and natural conditions[J]. Journal of the American Chemical Society, 1997, 119(38): 8852-8856
[12] 崔红艳, 李佳欣, 吕纬, 等. 改性树脂对高浓度硅酸的吸附去除[J]. 硅酸盐通报, 2020, 39(10): 3373-3378
[13] BAYANOV V A, RAKHIMOVA O V, RAKHIMOV V I, et al. Determination of silicon and germanium in systems based on SiO2-GeO2 using kinetic spectrophotometry[J]. Glass Physics and Chemistry, 2014, 40(2): 221-223
[14] 严方, 任熵, 林德莲. ICP-AES法测定原油中的硅[J]. 中国测试技术, 2006(5): 57-58
[15] BARCIELA ALONSO M C, PREGO R. Determination of silicate, simultaneously with other nutrients (nitrite, nitrate and phosphate), in river waters by capillary electrophoresis[J]. Analytica Chimica Acta, 2000, 416(1): 21-27
[16] YADAV A, BHOWMIK D, SIKDER N. Direct determination of zirconium and silicon in zircon by flame atomic absorption spectrometry using two rapid decomposition methods[J]. Analytical Methods, 2012, 4(8): 2454-2461
[17] 李美蓉, 邵洪扬, 周海刚, 等. 硅钼蓝光度法测定油田采出水中可溶性SiO2含量的改进[J]. 实验室研究与探索, 2018, 37(12): 4-8
[18] 周英, 白莹, 林骥华. 循环冷却水与锅炉用水中硅含量测定的实验研究[J]. 工业水处理, 2017, 37(8): 93-97
[19] IlER R K. The chemistry of silica[M]. New York: John Wiley & Sons, 1979.