您好,欢迎来到中国测试科技资讯平台!

首页> 数字期刊群 >本期导读>基于转子分段的永磁电机齿槽转矩抑制方法研究

基于转子分段的永磁电机齿槽转矩抑制方法研究

750    2022-12-10

¥0.50

全文售价

作者:姜富宽

作者单位:驻马店技师学院,河南 驻马店 463000


关键词:永磁电机;解析模型;齿槽转矩;转矩脉动;抑制


摘要:

齿槽转矩是永磁电机所特有的,在电机不通电情况下,由于气隙磁场中的能量分布不均匀而导致的。较大的齿槽转矩会影响控制系统的控制精度,产生振动和噪声,甚至机械共振,因此,需要引起足够重视。为降低电机的齿槽转矩和转矩脉动,该文基于转子分段的方法,提出一种用于磁通反向永磁电机齿槽转矩抑制的新结构。在该结构中,每一个分段转子的齿宽不同,通过优化齿宽的组合以达到削弱齿槽转矩的目的。建立磁通反向永磁电机齿槽转矩的解析模型,并且推导转子分段的关键尺寸。然后,以一台12槽10极磁通反向永磁电机为例,运用有限元仿真验证所推导公式的正确性。最后,制作相应的实验测试用样机,并进行齿槽转矩测试。经研究发现,采用该文所提出的方法,电机的转矩脉动由18.3%降低到3.7%。



Research on torque ripple reduction of flux reversal permanent magnet machines based on rotor blocks
JIANG Fukuan
Zhumadian Technician College, Zhumadian 463000, China
Abstract: Cogging torque is unique to permanent magnet motors, and is caused by uneven energy distribution in the air gap magnetic field when the motor is not energized. Larger cogging torque will affect the control accuracy of the control system, causing vibration and noise, and even mechanical resonance. Therefore, it needs to be paid attention to. In order to reduce the cogging torque and torque ripple of the motor, based on the rotor segmentation method, this paper proposes a new structure for the suppression of the cogging torque of the magnetic flux reversal permanent magnet motor. In this structure, the tooth width of each segmented rotor is different, and the purpose of reducing the cogging torque is achieved by optimizing the combination of tooth width. An analytical model of the cogging torque of a magnetic flux reverse permanent magnet motor is established, and the key dimensions of the rotor segment are derived. Then, taking a 12-slot 10-pole magnetic flux reverse permanent magnet motor as an example, finite element simulation is used to verify the correctness of the deduced formula. Finally, make the corresponding experimental test prototype, and carry out the cogging torque test. It is found through research that using the method proposed in this article, the torque ripple of the motor is reduced from 18.3% to 3.7%.
Keywords: permanent magnet machine;analytical modeling;cogging torque;torque ripple;reduction
2022, 48(11):106-112  收稿日期: 2021-07-23;收到修改稿日期: 2021-09-02
基金项目:
作者简介: 姜富宽(1983-),男,河南泌阳县人,高级讲师,硕士,研究方向为电气自动化、工业机器人应用
参考文献
[1] 高玉婷. 磁通反向电机的理论分析及拓扑研究[D]. 武汉: 华中科技大学, 2017.
[2] 张颖博, 李洋. 磁通反向永磁电机齿槽转矩分析与抑制[J]. 微电机, 2019, 52(10): 31-35
[3] 徐涛, 赵世伟, 杨向宇, 等. 基于田口法的磁通反向电机的优化设计析[J]. 微电机, 2016, 49(2): 6-9
[4] 郭凯凯, 郭有光. 磁通反向直线旋转永磁电机三维非线性等效磁路模型分析[J]. 电工技术学报, 2020, 35(20): 4278-4286
[5] LI H Y, ZHU Z Q. Analysis of flux-reversal permanent-magnet machines with different consequent-pole PM topologies[J]. IEEE Transactions on Magnetics, 2018, 54(11): 8105305
[6] 殷芳博, 花为, 黄文涛, 等. 基于电压矢量优化的磁通反向永磁电机模型预测转矩控制[J]. 中国电机工程学报, 2017, 37(22): 6524-6533
[7] FEI W Z, LUK P, SHEN J X, et al. Permanent-magnet flux-switching integrated starter generator with different rotor configurations for cogging torque and torque ripple mitigations[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1247-1256
[8] ZHU X F, HUA W, WU Z Z. Cogging torque suppression in flux-reversal permanent magnet machines[J]. IET Electric Power Applications, 2018, 12(1): 135-143
[9] 王泽峰, 寇富军. 直升机主旋翼扭矩测量原理研究[J]. 中国测试, 2020, 46(9): 47-52
[10] 张洋, 吴定祥, 李雯, 等. 基于行为模型的电机动态扭矩测试研究[J]. 中国测试, 2020, 46(6): 7-12
[11] CRAIG E. Rapid road friction estimation using independent left/right steering torque measurements[J]. Vehicle System Dynamics, 2020, 58(3): 377-403
[12] TOBIAS G, ANDREAS V, KNUT G. External torque estimation for an industrial robot arm using joint torsion and motor current measurements[J]. IFAC Papers OnLine, 2019, 52(15): 352-357
[13] ZHANG H K, RUBÉN O D L, MARTIN P, et al. A study of mechanical torque measurement on the wind turbine drive train—ways and feasibilities[J]. Wind Energy, 2018, 21(12): 1406-1422
[14] 卢腊, 刘妤, 徐梓翔, 等. 基于 STM32 的无线动态扭矩测量系统[J]. 仪表技术与传感器, 2018(4): 81-86
[15] 杨文志, 冯志斌, 何维娜. 传动轴扭矩测量装置的结构设计及实验分析[J]. 中国测试, 2015, 41(1): 120-123
[16] 许艺青, 杨晓翔, 韦铁平, 等. 电阻应变片敏感栅结构参数对应变传递的影响研究[J]. 机电工程, 2018, 35(4): 352-357