您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>金属材料内部缺陷试块的热压扩散连接制备方法

金属材料内部缺陷试块的热压扩散连接制备方法

1108    2022-11-18

免费

全文售价

作者:张亮1,2, 唐凌天1,2, 王海舟1,2

作者单位:1. 钢铁研究总院,北京 100081;
2. 北京中实国金国际实验室能力验证研究有限公司,北京 100081


关键词:无损检测;缺陷试块;热压扩散连接;人工模拟缺陷


摘要:

针对空腔类缺陷的人工模拟无损检测试块的研制,提出热压扩散连接技术的制备方法。利用热压扩散连接方法,制备内部含有三种不同规格尺寸人工模拟缺陷的试块。分析结果表明,试块连接区域熔合较好,熔合线难以区分;基体组织未发生明显变化;试块内缺陷尺寸发生变化且呈现一定变化规律,变形率与缺陷边界夹角和缺陷所呈角度大小有关。试块宏观尺寸呈现一定的形变,无损检测及金相分析结果显示人工缺陷边界清晰,基体连接区域扩散连接充分且组织无有害缺陷。热压扩散连接法应用于空腔类缺陷的人工模拟无损检测试块的研制工作具有可行性。



Preparation method of hot-pressing diffusion bonding for internal defect test block of metal materials
ZHANG Liang1,2, TANG Lingtian1,2, WANG Haizhou1,2
1. Central Iron and Steel Research Institute, Beijing 100081, China;
2. China NIL Research Center for Proficiency Testing, Beijing 100081, China
Abstract: For the development of NDT simulated test blocks with cavity defects, the preparation method of hot-pressing diffusion bonding technique was proposed. Using the hot-pressing diffusion bonding method, a test block containing artificially simulated defects of three different sizes was prepared. The analysis results show that the connection area of the test block was fused well, and the fusion line was difficult to distinguish. There was no obvious change in the matrix structure. The size of the defects changed and show a certain change rule. The deformation rate was related to the angle between the defect boundary and the angle of the defect. The macroscopic size of the test block show a certain degree of deformation. The results of non-destructive testing and metallographic analysis show that the boundaries of artificial defects were clear, the matrix connection area was fully diffused and the structure was free of harmful defects. It is feasible to apply the hot-pressing diffusion bonding method to the development of non-destructive testing simulated test blocks with cavity defects.
Keywords: non-destructive testing;defect test block;hot-pressing diffusion bondinging;artificial defect
2022, 48(11):41-46  收稿日期: 2021-11-01;收到修改稿日期: 2022-01-25
基金项目: 国家重点研发计划项目(2018YFB0704102)
作者简介: 张亮(1985-),男,山西忻州市人,高级工程师,硕士,主要从事检测技术能力验证研究
参考文献
[1] 无损检测超声检测用试块: GB/T 23905—2009[S]. 北京: 中国标准出版社, 2009.
[2] 无损检测超声试块通用规范: JB/T 8428—2015[S]. 北京: 中国质检出版社, 2015.
[3] 郑晖, 林树青. 超声检测[M]. 第2版. 北京: 中国劳动社会保障出版社, 2008.
[4] 张广纯. 金属材料的超声波探伤[M]. 北京:冶金无损检测人员技术资格鉴定委员会, 2012.
[5] 王文忠. 几种探伤用缺陷试块的制备方法[J]. 无损检测, 1987, 9(12): 341-342
[6] 田长辉. 无损检测模拟试块的制作与管理[J]. 江汉石油职工大学学报, 2012, 25(6): 68-70
[7] 殷尊, 金敏华, 张红军, 等. 低合金钢板背面腐蚀坑的超声波反射特性[J]. 中国测试, 2019, 45(10): 153-158
[8] 蒋志峰. 基于工件结构参数的超声频谱特征的构造及识别[J]. 新技术新工艺, 2005(2): 30-32
[9] HONARVAR F, VARVANI-FARAHANI A. A review of ultrasonic testing applications in additive manufacturing: defect evaluation, material characterization, and process control[J]. Ultrasonics, 2020, 108: 106227
[10] RIEDER H, SPIES M, BAMBERG J, et al. On-and offline ultrasonic inspection of additively manufactured components[C]//19th World Conference on Non-Destructive Testing, 2016: 1-8.
[11] ROY M, WALTON K, HARLEY J B, et al. Ultrasonic evaluation of segmental variability in additively manufactured metal components[C]//2018 IEEE International Ultrasonics Symposium (IUS). IEEE, 2018: 1-4.
[12] PUA L M, RUMBOLD S O. Industrial microchannel devices: where are we today?[C]//International Conference on Nanochannels, Microchannels, and Minichannels. 2003, 36673: 773-780.
[13] XUN Y W, TAN M J. Applications of superplastic forming and diffusion bonding to hollow engine blades[J]. Journal of Materials Processing Technology, 2000, 99(1-3): 80-85
[14] HUI J L, XIU L F. Study of diffusion bonding of fine grain TC21 titanium alloy[J]. Rare Metal Materials and Engineering, 2009, 38(9): 1509-1513
[15] 邹家生. 材料连接原理与工艺[M]. 哈尔滨: 哈尔滨工业大学出版社, 2005.