您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于虚拟传感器的AGV故障诊断方法

基于虚拟传感器的AGV故障诊断方法

823    2022-07-27

免费

全文售价

作者:顾伟1, 邓振明2,3, 王红4

作者单位:1. 启东开放大学电子信息部,江苏 南通 226200;
2. 哈尔滨通用飞机工业有限责任公司,黑龙江 哈尔滨 150066;
3. 中国民用航空飞行学院,四川 广汉 618307;
4. 北京航空航天大学仪器科学与光电工程学院,北京 100191


关键词:自动导引车;虚拟传感器;故障诊断;自适应估计;${{\cal H}_\infty } $理论


摘要:

为实现自动导引车(automated guided vehicle, AGV)的低成本有效故障诊断,提出一种基于虚拟传感器(virtual sensor,VS)的AGV故障检测方法。首先,基于AGV的结构特性,建立紧凑动力学模型;基于所建立的AGV模型,结合${\mathcal{H}_\infty }$控制理论,设计全新的VS,使得能够在无需了解AGV轮胎模型且不进行线性化处理的条件下,对车轮横向力、纵向力及转矩进行有效估计,通过相应的定理证明所提VS的可解性与收敛性;进一步,通过比较AGV模型与VS产生的输出响应构造用于故障诊断的残差信号,并给出基于“IF-THEN”规则的故障诊断策略;最后,通过实验验证所提故障诊断方法的有效性。结果表明,所提方法能够对不同运行情况下的AGV状态进行有效检测,从而可为后续复杂AGV系统的全面状态监测提供有益参考。


Virtual-sensor-based fault diagnosis method for automated guided vehicles
GU Wei1, DENG Zhenming2,3, WANG Hong4
1. Department of Electronic Information, The Open University of Qidong, Nantong 226200, China;
2. AVIC Harbin General Aircraft Industry Co., Ltd., Harbin 150066, China;
3. Civil Aviation Flight University of China, Guanghan 618307, China;
4. School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China
Abstract: In order to realize low-cost and effective fault diagnosis for automated guided vehicles(AGV), a fault detection method based on virtual sensor (VS) is proposed. Firstly, based on the structural characteristics of AGV, a compact dynamic model is established. Then, based on the compact AGV model and ${{{\cal H}_\infty } }$ control theory, a new adaptive state estimator is designed, which can effectively estimate the lateral force, longitudinal force and torque acting on the wheels without understanding the AGV tire model and linearization. Corresponding theorems are proposed to prove the solvability and convergence of the proposed VS. Furthermore, by comparing the output response generated by the compact AGV model and the proposed VS, the residual signals for fault diagnosis are constructed, and the fault diagnosis strategies based on "IF-THEN" rules are given. Finally, the effectiveness of the proposed fault diagnosis method is verified by experiments. The results show that the proposed method can effectively detect the state of AGV under different operating conditions, which can provide a useful reference for the future comprehensive state monitoring of complex AGV systems.
Keywords: automated guided vehicle;virtual sensor;fault diagnosis;adaptive estimation;${{\cal H}_\infty } $ theory
2022, 48(7):97-106  收稿日期: 2021-06-03;收到修改稿日期: 2021-07-17
基金项目: 国家自然科学基金(61922011)
作者简介: 顾伟(1974-),男,江苏南通市人,高级讲师,硕士,主要从事电子电工方向的研究
参考文献
[1] 邹裕吉, 宋豫川, 王馨坤, 等. 多目标自适应聚类遗传算法求解无路径冲突的AGV与加工设备集成调度问题[J/OL]. 中国机械工程: 1-14[2021-06-03]. http://kns.cnki.net/kcms/detail/42.1294.TH.20210428.1022.002.html.
[2] 周亚勤, 汪俊亮, 吕志军, 等. 密集仓储环境下多AGV/RGV调度方法研究[J/OL]. 机械工程学报: 1-12[2021-06-03]. http://kns.cnki.net/kcms/detail/11.2187.th.20210420.1504.168.html.
[3] 潘龙翔, 李雯, 袁志雄, 等. 智能停车场中全向AGV运动控制研究[J]. 现代电子技术, 2021, 44(10): 181-186
[4] 黄永付, 胡志华, 王耀宗. 考虑缓冲区容量的岸桥、AGV和堆场起重机集成调度[J]. 大连理工大学学报, 2021, 61(3): 306-315
[5] FRIVALDSKY M, SEDO J, PIPISKA M, et al. Design of measuring and evaluation unit for multi-cell traction battery system of industrial AGV[J]. Electrical Engineering, 2020, 102(10): 1-13
[6] FANTI M P, MANGINI A M, PEDRONCELLI G, et al. A decentralized control strategy for the coordination of AGV systems[J]. Control Engineering Practice, 2018, 70(1): 86-97
[7] ZACHARIA P T, XIDIAS E K. AGV routing and motion planning in a flexible manufacturing system using a fuzzy-based genetic algorithm[J]. International Journal of Advanced Manufacturing Technology, 2020, 109(2): 1801-1813
[8] 郇帅. 基于深度学习的AGV系统故障诊断算法研究[D]. 北京: 北京邮电大学, 2020.
[9] 刘云涛. AGV复杂系统的故障诊断方法研究[D]. 杭州: 杭州电子科技大学, 2018.
[10] 陆娴, 郭昊坤, 陆国超. 基于MATLAB的AGV运行故障仿真研究[J]. 科学技术与工程, 2011, 11(9): 2149-2151
[11] PRATAMA P S, GULAKARI A V, SETIAWAN Y D, et al. Trajectory tracking and fault detection algorithm for automatic guided vehicle based on multiple positioning modules[J]. International Journal of Control Automation and Systems, 2016, 14(2): 400-410
[12] YAN R, JACKSON L M, DUNNETT S J. Automated guided vehicle mission reliability modeling using a combined fault tree and Petri net approach[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(3): 1825-1837
[13] 赵鹏振, 刘继. 基于随机共振与蝙蝠算法的高速动车组滚动轴承故障诊断[J]. 中国测试, 2021, 47(3): 16-23
[14] 但长林, 李三雁, 张彬. 基于样本熵和SVM的滚动轴承故障诊断方法研究[J]. 中国测试, 2020, 46(11): 37-42
[15] CHO W, YOON J, YIM S, et al. Estimation of tire forces for application to vehicle stability control[J]. IEEE Transactions on Vehicular Technology, 2010, 59(2): 638-649
[16] BAFFET G, CHARARA A, D HERBOMEZ G. An observer of tire–road forces and friction for active security vehicle systems[J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(6): 651-661
[17] KUNTANAPREEDA S. Super-twisting sliding-mode traction control of vehicles with tractive force observer[J]. Control Engineering Practice, 2015, 38: 26-36
[18] ACOSTA M, KANARACHOS S. Tire lateral force estimation and grip potential identification using neural networks, extended Kalman filter, and recursive least squares[J]. Neural Computing and Applications, 2018, 30(11): 3445-3465
[19] HOSSEIN M, MEHDI M, SADRA R. A novel technique for optimal integration of active steering and differential braking with estimation to improve vehicle directional stability[J]. ISA Transactions, 2018, 80: 513-527
[20] REZAEIAN A, ZARRINGHALAM R, FALLAH S, et al. Novel tire force estimation strategy for real-time implementation on vehicle applications[J]. IEEE Transactions on Vehicular Technology, 2015, 64(6): 2231-2241
[21] RAJAMANI R, PHANOMCHOENG G, PIYABONGKARN D, et al. Algorithms for real-time estimation of individual wheel tire-road friction coefficients[J]. IEEE Trans Mechatronics, 2012, 17(6): 1183-1195
[22] WITCZAK M, BUCIAKOWSKI M, PUIG V, et al. An LMI approach to robust fault estimation for a class of nonlinear systems[J]. International Journal of Robust & Nonlinear Control, 2016, 26(7): 1530-1548
[23] PAZERA M, WITCZAK M. Towards robust simultaneous actuator and sensor fault estimation for a class of nonlinear systems: Design and comparison[J]. IEEE Access, 2019, 7: 97143-97158
[24] SKELTON R, IWASAKI T, GRIGORIADIS D. A unified algebraic approach to control design[M]. CRC Press, 1997.
[25] RAJAMANI R. Vehicle dynamics and control[M]. Springer Science, 2006.
[26] MARONNA R A, MARTIN D R, YOHAI V J. Robust statistics: theory and methods(with R)[M]. John Wiley & Sons, 2019.