您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>无机非金属材料超声检测研究进展

无机非金属材料超声检测研究进展

1441    2022-07-27

免费

全文售价

作者:邹大鹏1, 林奕钦1,2, 叶国良2, 范中岚1, 张永康1, 曾吕明1, 李校智1

作者单位:1. 广东工业大学机电工程学院 省部共建精密电子制造技术与装备国家重点实验室,广东 广州 510006;
2. 东莞理工学院机械工程学院,广东 东莞 523808


关键词:非金属材料;声衰减;声速;超声检测


摘要:

随着越来越多的无机非金属材料应用于各种产品和工程实践,对其缺陷无损检测需求成为热点。该文以陶瓷材料及复合材料作为无机非金属材料代表,通过分析两者的超声检测研究现状,探讨基于声速法和声衰减法的材料本身物理微观结构与超声特性参数之间的关系,分析传统超声与先进超声检测材料缺陷现状。分析得出陶瓷材料声衰减与密度相关性强、声速与孔隙率相关性强,碳纤维复合材料声衰减与声速与孔隙相关性强,并探讨先进超声检测技术检测无机非金属材料的优越性和局限性。提出通过增强仿真分析技术、结合先进超声检测技术、开发可控实验检测技术和超声三维成像技术来提高无机非金属材料超声检测的适用性、准确性、智能化程度与检测效率。


Review on ultrasonic testing of inorganic non-metallic materials
ZOU Dapeng1, LIN Yiqin1,2, YE Guoliang2, FAN Zhonglan1, ZHANG Yongkang1, ZENG Lüming1, LI Xiaozhi1
1. State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
2. School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
Abstract: Since inorganic non-metallic materials have been widely used in engineering, non-destructive testing of the materials plays an important role in the industry. This paper studies the traditional ultrasonic and advanced ultrasonic characterization of inorganic non-metallic materials by reviewing the state-of-the-art research on ultrasonic testing of ceramic and composite materials. The results show that the ultrasound attenuation of ceramic materials strongly correlates with materials density and the ultrasound velocity strongly correlates with porosity. However, the ultrasound attenuation and velocity of carbon fiber reinforced composites strongly correlate with porosity. The results also show the superiority and limitation of advanced ultrasonic testing technology for testing inorganic non-metallic materials. This paper proposes the techniques of enhanced simulation analysis, combined advanced ultrasonic, controllable experimental measurement and three-dimensional ultrasonic imaging to improve the application range, the precision, the intelligence and the efficiency of the ultrasonic testing of inorganic non-metallic materials.
Keywords: non-metallic materials;ultrasonic attenuation;ultrasonic velocity;ultrasonic testing
2022, 48(7):8-15,29  收稿日期: 2021-04-20;收到修改稿日期: 2021-06-16
基金项目: 国家重点研发计划(2018YFB1107703);广东省普通高校省级重大科研计划(2017KZDXM082);广东省普通高校省级重点领域专项(2020ZDZX2016)
作者简介: 邹大鹏(1977-),男,黑龙江五大连池市人,教授,主要从机电液测控与声学探测等研究
参考文献
[1] 刘伯胜. 水声学原理[M]. 哈尔滨: 哈尔滨工程大学出版社, 2010: 30-35.
[2] 应崇福. 超声学[M]. 北京: 科学出版社, 1990: 266-271.
[3] TIMOSHENKO S, GOODIER J N. 弹性理论[M]. 徐芝纶, 译. 北京: 高等教育出版社, 1990: 513-515.
[4] KULKARNI N. Ultrasonic characterization of green and sintered ceramics[J]. American Ceramic Society Bulletin, 1994: 146-153
[5] MORENO-GOBBI A, PéREZ M, NEGREIRA C A, et al. Ultrasonic attenuation and elastic modulus of ferroelectric ceramics[J]. Scripta Materialia, 2000, 43(3): 259-263
[6] YADAV A K, YADAV R R, PANDEY D K, et al. Ultrasonic study of fission products precipitated in the nuclear fuel[J]. Materials Letters, 2008, 62(17): 3258-3261
[7] YADAWA P K. Ultrasonic characterzation of ceramic material titanium diboride[J]. Ceramics-Silikaty, 2011, 55(2): 127-133
[8] EVANS A G, TITTMANN B R, AHLBERG L, et al. Ultrasonic attenuation in ceramics[J]. Journal of Applied Physics, 1978, 49(5): 2669-2679
[9] NAGARAJAN A. Ultrasonic study of elasticity‐porosity relationship in polycrystalline alumina[J]. Journal of Applied Physics, 1971, 42(10): 3693-3696
[10] KREHER W, RANACHOWSKI J, REJMUND F. Ultrasonic waves in porous ceramics with non-spherical holes[J]. Ultrasonics, 1977, 15(2): 70-74
[11] JEONG H, HSU D K, SHANNON R E, et al. Characterization of anisotropie elastic constants of silicon-carbide participate reinforced aluminum metal matrix composites: Part I. Experiment[J]. Metallurgical and Materials Transactions, 1994, 25(4): 799-809
[12] JEONG H, HSU D K. Quantitative estimation of material properties of porous ceramics by means of composite micromechanics and ultrasonic velocity[J]. NDT & E, 1996, 29(2): 95-101
[13] MARTIN L P, DADON D, ROSEN M. Evaluation of ultrasonically determined elasticity-porosity relations in zinc oxide[J]. Journal of the American Ceramic Society, 1996, 79(5): 1281-1289
[14] PHANI K K. Correlation between ultrasonic shear wave velocity and Poisson’s ratio for isotropic porous materials[J]. Journal of Materials Science, 2008, 43(1): 316-323
[15] STONE D E W, CLARKE B. Ultrasonic attenuation as a measure of void content in carbon-fibre reinforced plastics[J]. Non-Destructive Testing, 1975, 8(3): 137-145
[16] JONES B R, STONE D E W. Towards an ultrasonic-attenuation technique to measure void content in carbon-fibre composites[J]. Non-Destructive Testing, 1976, 9(2): 71-79
[17] MARTIN B G. Ultrasonic attenuation due to voids in fibre-reinforced plastics[J]. NDT International, 1976, 9(5): 242-246
[18] HALE J M, ASHTON J N. Ultrasonic attenuation in voided fibre-reinforced plastics[J]. NDT International, 1988, 21(5): 321-326
[19] 周晓军, 莫锦秋, 游红武, 等. 碳纤维复合材料分布孔隙率的超声衰减检测方法[J]. 复合材料学报, 1997(3): 108-115
[20] 李钊. 碳纤维复合材料孔隙率超声检测与评价技术研究[D]. 杭州: 浙江大学, 2014.
[21] 李果, 王继辉, 倪爱清, 等. 不同厚度碳纤维/环氧树脂复合材料孔隙率超声衰减模型[J]. 复合材料学报, 2020, 37(4): 877-885
[22] LIN L, LUO M, TIAN H T, et al. Experimental investigation on porosity of carbon fiber-reinforced composite using ultrasonic attenuation coefficient[C]//Conference on Nondestructive Testing. Shanghai, 2008.
[23] 周晓军, 游红武, 程耀东, 等. 含孔隙碳纤维复合材料的超声衰减模型[J]. 复合材料学报, 1997(3): 100-107
[24] 邹大鹏, 刘伟, 龙建军, 等. 海底沉积物压缩波速度与切变波速度的关系[J]. 声学学报, 2018, 43(6): 951-960
[25] MARTIN B G. Ultrasonic wave propagation in fiber‐reinforced solids containing voids[J]. Journal of Applied Physics, 1977, 48(8): 3368-3373
[26] REYNOLDS W N, WILKINSON S J. The analysis of fibre-reinforced porous composite materials by the measurement of ultrasonic wave velocities[J]. Ultrasonics, 1978, 16(4): 159-163
[27] JEONG H, HSU D K. Experimental analysis of porosity-induced ultrasonic attenuation and velocity change in carbon composites[J]. Ultrasonics, 1995, 33(3): 195-203
[28] 李雄兵, 杨岳, 梁运涛, 等. 含孔隙碳纤维复合材料对超声波相速度的影响[J]. 计量学报, 2008(4): 378-381
[29] WRóBEL G, PAWLAK S. The effect of fiber content on the ultrasonic wave velocity in glass/polyester composites[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2007, 20(1-2): .295-298
[30] O’DONNELL M, JAYNES E T, MILLER J G. General relationships between ultrasonic attenuation and dispersion[J]. The Journal of the Acoustical Society of America, 1978, 63(6): 1935-1937
[31] KARABUTOV A A, PODYMOVA N B. Nondestructive porosity assessment of cfrp composites with spectral analysis of backscattered laser-induced ultrasonic pulses[J]. Journal of Nondestructive Evaluation, 2013, 32(3): 315-324
[32] 邹大鹏, 阚光明, 龙建军, 等. 海底浅表层沉积物原位声学测量方法探讨[J]. 海洋学报, 2014, 36(11): 111-119
[33] 张清纯, 马逖, 林素贞, 等. 结构陶瓷体内微缺陷的高频超声无损检测[J]. 无机材料学报, 1987(4): 354-363
[34] 黎润民, 吴小明, 张仲健, 等. 精细陶瓷材料超声检测技术研究[J]. 无损检测, 1993, 15(6): 151-154
[35] 彭光俊, 赵志. 现代陶瓷超声检测技术[J]. 无损探伤, 2003(2): 1-4
[36] 岸辉雄, 刘浩斌. 陶瓷材料的无损评价[J]. 无损检测, 1987, 9(7): 201-206
[37] PETIT S, DUQUENNOY M, OUAFTOUH M, et al. Non-destructive testing of ceramic balls using high frequency ultrasonic resonance spectroscopy[J]. Ultrasonics, 2005, 43(10): 802-810
[38] KESHARAJU M, NAGARAJAH R, ZHANG T, et al. Ultrasonic sensor based defect detection and characterisation of ceramics[J]. Ultrasonics, 2014, 54(1): 312-317
[39] 林莉, 罗明, 郭广平, 等. 碳纤维复合材料孔隙率超声声阻抗法检测[J]. 复合材料学报, 2009, 26(3): 105-110
[40] 滕国阳, 周晓军, 杨辰龙, 等. 厚截面碳纤维复合材料远表面微缺陷超声检测[J]. 光学精密工程, 2018, 26(12): 3108-3117
[41] FENG W, ZHOU X J, ZENG X, et al. Ultrasonic inspection of localized defects in low-porosity cfrp[J]. Sensors (Basel, Switzerland), 2019, 19(7).
[42] SZEWIECZEK A B L, HILLGER W. High frequency and mobile testing without component immersion[C]//Proceedings of the 12th European Conference on Non-Destructive Testing, 2018.
[43] MAIO L, MEMMOLO V, BOCCARDI S, et al. Ultrasonic and IR thermographic detection of a defect in a multilayered composite plate[J]. Procedia Engineering, 2016, 167: 71-79
[44] ANTIN K-N, MACHADO M A, SANTOS T G, et al. Evaluation of different non-destructive testing methods to detect imperfections in unidirectional carbon fiber composite ropes[J]. Journal of Nondestructive Evaluation, 2019, 38(1): 23
[45] LI H G, ZHOU Z G. Detection and characterization of debonding defects in aeronautical honeycomb sandwich composites using noncontact air-coupled ultrasonic testing technique[J]. Applied Sciences, 2019, 9(2): 283
[46] 刘旭, 吴俊伟, 何勇, 等. 基于空耦换能器的碳纤维增强环氧树脂编织复合材料激光超声检测技术[J/OL]. 复合材料学报. 1-9[2021-05-29]. https://doi.org/10.13801/j.cnki.fhclxb.20201210.003.
[47] 周正干, 孙广开, 李征, 等. 复合材料层压板钻孔分层激光超声检测方法[J]. 机械工程学报, 2013, 49(22): 29-33
[48] 李伟, 姜智通, 张璐莹, 等. 碳纤维复合材料损伤声发射信号模式识别方法[J]. 中国测试, 2020, 46(6): 121-128
[49] 刘宇韬, 盛文娟. 基于AdaBoost-LSSVM的纤维复合材料损伤识别[J]. 中国测试, 2020, 46(9): 148-153