您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>激光测风雷达风场探测性能评估

激光测风雷达风场探测性能评估

920    2022-01-21

免费

全文售价

作者:赵文凯, 赵世军, 单雨龙, 孙学金

作者单位:国防科技大学气象海洋学院,江苏 南京 211101


关键词:激光测风雷达;风场探测;反演算法;性能比对


摘要:

激光测风雷达作为一种新型测风设备,在风场精准探测领域具有重要应用前景。为实现激光测风雷达风场探测性能的评估,将相干脉冲激光测风雷达的测风数据与探空气球风场数据进行时空同步处理后开展比对分析。以探空气球风场数据为真值,通过区分不同天气条件、不同高度区间、不同风速区间对数据进行分类,计算两种风场数据的相关系数与平均偏差,分析激光测风雷达的风场探测性能。结果表明,激光测风雷达的风场探测性能整体较好,晴空条件下风速偏差约为1 m/s,风向偏差约为20°;不良天气条件会对激光测风雷达的探测性能造成较大影响,雨天时的影响最大。


Evaluation of wind detection performance based on wind lidar
ZHAO Wenkai, ZHAO Shijun, SHAN Yulong, SUN Xuejin
College of Meteorology and Oceanography, National University of Defense Technology, Nanjing 211101, China
Abstract: As a new type of wind measuring equipment, wind lidar has an important application prospect in the field of accurate wind field detection. In order to evaluate the wind detection performance of wind lidar, the wind data of coherent pulse wind lidar and sounding balloon are processed synchronously in time and space, and then compared and analyzed. Taking the sounding balloon wind field data as the true value, the data are classified by distinguishing different weather conditions, different altitude intervals and different wind speed intervals, and the correlation coefficient and average deviation of the two kinds of wind field data are calculated to analyze the wind field detection performance of wind lidar. The results show that the wind field detection performance of wind lidar is good, the wind speed deviation is about 1 m/s and the wind direction deviation is about 20° in clear sky; adverse weather conditions will have a great impact on the detection performance of lidar, especially in rainy days.
Keywords: wind lidar;wind field detection;inversion algorithm;performance comparison
2022, 48(1):147-153  收稿日期: 2020-11-23;收到修改稿日期: 2021-01-18
基金项目: 国家自然科学基金项目(41575020)
作者简介: 赵文凯(1997-),男,湖北襄阳市人,硕士研究生,专业方向为激光大气探测技术与应用研究
参考文献
[1] 张建宏, 武锦辉, 王高, 等. 多普勒雷达弹丸测速信号的速度重建方法[J]. 中国测试, 2020, 46(4): 31-35
[2] HUFFAKER R M, JELALIAN A V, THOMSON J A L. Laser-Doppler system for detection of aircraft trailing vortices[J]. Proceedings of the IEEE, 1970, 58(3): 322-326
[3] KANE T J, KOZLOVSKY W J, BYER R L, et al. Coherent laser radar at 1.06 μm using Nd: YAG lasers[J]. Optics Letters, 1987, 12(4): 239-241
[4] KAVAYA M J, HENDERSON S W, MAGEE J R, et al. Remote wind profiling with a solid-state Nd: YAG coherent lidar system[J]. Optics Letters, 1989, 14(15): 776-778
[5] HENDERSON S W, HALE C P, MAGEE J R, et al. Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho: YAG lasers[J]. Optics Letters, 1991, 16(10): 773-775
[6] MORSE B, BALLARD B, REED C, et al. NASA’s robotic lunar lander project update[C]//AIAA SPACE 2010 Conference & Exposition, 2010.
[7] 周艳宗, 王冲, 刘燕平, 等. 相干测风激光雷达研究进展和应用[J]. 激光与光电子学进展, 2019, 56(2): 9-26
[8] 李冬梅, 郑永超, 潘静岩, 等. 相干多普勒激光测风雷达系统研究[J]. 光学技术, 2010, 36(6): 880-884
[9] ZHANG F, XUE H, LIU Z, et al. High performance China-made coherent Doppler wind lidar prototype[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2011, 8192(3): 165-177
[10] 冯力天, 郭弘其, 陈涌, 等. 1.55 μm全光纤多普勒测风雷达系统与试验[J]. 红外与激光工程, 2011(5): 844-847
[11] DIAO W, ZHANG X, LIU J, et al. All fiber pulsed coherent lidar development for wind profiles measurements in boundary layers[J]. Chinese Optics Letters, 2014(7): 71-74
[12] WU S H, YIN J, LIU B, et al. Characterization of turbulent wake of wind turbine by coherent Doppler lidar[C]//Lidar Remote Sensing for Environmental Monitoring XIV, 2014.
[13] WANG C, XIA H, SHANGGUAN M, et al. 1.5 μm polarization coherent lidar incorporating time-division multiplexing[J]. Optics Express, 2017, 25(17): 20663