您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>白光干涉测量法中蝠翼效应的模拟分析

白光干涉测量法中蝠翼效应的模拟分析

1458    2022-01-21

免费

全文售价

作者:李萍, 闫英, 周平

作者单位:大连理工大学 精密与特种加工教育部重点实验室,辽宁 大连 116024


关键词:白光干涉仪;蝠翼效应;衍射光学;光栅


摘要:

为探索白光干涉仪在测量矩形台阶时的蝠翼效应误差,建立白光干涉虚拟测量模型。在模型中,考虑白光光源带宽和干涉物镜数值孔径以及圆孔衍射模型的影响,分析蝠翼效应与真实台阶高度、光源中心波长之间的关系。模拟结果表明当台阶高度差是λ0/4的奇数倍时会出现蝠翼效应,且越接近λ0/4的奇数倍,蝠翼效应越显著。关于对蝠翼误差的补偿,分别采用中值滤波和均值滤波两种方式对含有蝠翼效应的测量结果进行修正,并利用台阶高度、台阶与轮廓中线围成的面积两种评价参数对比补偿效果,结果表明中值滤波的修正结果优于均值滤波。


Research of batwing effect in white-light interferometry
LI Ping, YAN Ying, ZHOU Ping
Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
Abstract: To solve the batwing effect when measuring rectangular steps, a white-light interferometry model is established. In this model, considering the influence of bandwidth, numerical aperture and diffraction by circular aperture, the relationship between step height difference, center wavelength and the batwing effect is analyzed. The simulation results show that the batwing effect will appear when the height difference is an odd multiple of λ0/4, and batwing effect is most pronounced when the height difference is closer to the odd times of λ0/4. To compensate the batwing effect, median filter and mean filter are used to correct the measurement results. Then the compensation effects are compared by two evaluation parameters: the height difference, and the area enclosed by the step contour with its centerline. The results show that the correction result of median filter is better than mean filter.
Keywords: white-light interferometer;batwing effect;diffractive optic;grating
2022, 48(1):1-8  收稿日期: 2020-12-24;收到修改稿日期: 2021-03-26
基金项目: 国家自然科学基金(51975094,51875078,51991372);中央高校基本科研业务费(DUT20LAB108,DUT20ZD216)
作者简介: 李萍(1996-),女,山东青岛市人,硕士研究生,专业方向为超精密加工测量技术
参考文献
[1] 徐平, 沙从术. 产品表面缺陷检测系统设计与开发[J]. 中国测试, 2020, 46(6): 34-38
[2] 郑毅. 垂直扫描白光干涉表面形貌测量软件系统研究[D]. 武汉: 华中科技大学, 2015.
[3] 郭继平, 于冀平, 方南家, 等. 无限变焦3D形貌仪测量条件及不确定度分析[J]. 中国测试, 2014, 40(3): 28-31
[4] GAO F, LEACH R K, PETZING J, et al. Surface measurement errors using commercial scanning white light interferometers[J]. Measurement Science and Technology, 2008, 19(1): 015303
[5] BOEDECKER S, BAUER W, KRÜGER-SEHM R, et al. Comparability and uncertainty of shape measurements with white-light interferometers[J]. SPIE, 2010, 7718: 77180J
[6] HARASAKI A, SCHMIT J, WYANT J C, et al. Improved vertical-scanning interferometry[J]. Applied Optics, 2000, 39(13): 2107
[7] NIEHUES J, LEHMANN P. Improvement of lateral resolution and reduction of batwings in vertical scanning white-light interferometry[J]. SPIE, 2011, 8082(3): 576-581
[8] LEHMANN P, XIE W, NIEHUES J. Transfer characteristics of rectangular phase gratings in interference microscopy[J]. Optics Letters, 2012, 37(4): 758
[9] LEHMANN P, XIE W. Signal formation in depth-scanning 3D interference microscopy at high numerical apertures[J]. SPIE, 2015, 9660: 966015
[10] XIE W, LEHMANN P, NIEHUES J. Signal modeling in low coherence interference microscopy on example of rectangular grating[J]. Optics Express, 2016, 24(13): 14283
[11] XIE W, HAGEMIER S. Transfer characteristics of optical profilers with respect to rectangular edge and step height measurement[C]//SPIE Optical Metrology, 2017.
[12] LEHMANN P, TERESCHENKO S, ALLENDORF B, et al. Spectral composition of low-coherence interferograms at high numerical apertures[J]. Journal of the European Optical Society-Rapid Publications, 2019, 15(5): 1-9
[13] 谢初南, 傅云霞, 李源. 激光聚集方法在纳米计量领域的应用[J]. 电子测量与仪器学报, 2008, 22(S2): 195-200
[14] 李娟. 白光显微干涉表面形貌三维测量系统的研究[D]. 武汉: 华中科技大学, 2012 .
[15] 戴蓉. 基于垂直扫描工作台的白光干涉表面形貌测量系统研究[D]. 武汉: 华中科技大学, 2007.
[16] 牛渊, 张敏, 王俊杰, 等. 基于白光干涉法测量微光栅形貌及相关几何参量的研究[J]. 光学仪器, 2017, 39(2): 1-7
[17] GROOT D P. Principles of interference microscopy for the measurement of surface topography[J]. Advances in Optics and Photonics, 2015, 7(1): 1-65
[18] 何艳林, 陈姿言, 吴逢铁. 相干和非相干光源对贝塞尔光束成像系统分辨率的影响[J]. 激光与光电子学进展, 2016, 53(9): 56-62
[19] Geometrical product specifications(GPS)—Surface texture: Profile method; Measurement standards—Part 1: Material measures: ISO 5436-1: 2000(E)[S]. 2000.