您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>巡线机器人的刚柔耦合动力学特性仿真研究

巡线机器人的刚柔耦合动力学特性仿真研究

802    2021-11-23

免费

全文售价

作者:苏睿1, 李刚俊1, 郭成操1, 张欢1, 黄杨森2

作者单位:1. 成都工业学院智能制造学院,四川 成都 611730;
2. 中国东方电气集团有限公司, 四川 成都 611731


关键词:机器人;输电线;铁塔;ADAMS;动力学


摘要:

针对输电线路机器人在线作业或移动时状态不清晰的问题,研究输电线、机器人以及铁塔的刚柔耦合动力学响应。首先,通过UG软件创建铁塔、机器人三维实体模型,采用连续体法建立输电线三维模型,并设置装配约束关系。然后,模型导入 ADAMS 软件,并定义柔、刚体。最后,仿真得到机器人质心与输电线中点在XYZ方向的速度与加速度,以及机器人内部电机的力矩变化。将软件仿真得到的机器人质心位移与电机力矩的曲线与数值模型仿真结果进行比对,分析其结果差异率,进一步明确柔性输电线与刚性机器人之间的动力学关系,可为输电线路机器人的优化设计提供理论参考。


Simulation of rigid and flexible coupling dynamics for inspection robot
SU Rui1, LI Gangjun1, GUO Chengcao1, ZHANG Huan1, HUANG Yangsen2
1. School of Intelligent Manufacturing, Chengdu Technological University, Chengdu 611730, China;
2. Dongfang Electric Corporation, Chengdu 611731, China
Abstract: In order to study the rigid flexible coupling dynamic response of transmission line, robot and tower when the transmission line robot works or moves online. The 3D entity model of tower and robot is built by UG and 3D model of transmission line is established by continuum method. The assembly constraint relationship among the model is set. Then, the model was imported into ADAMS software, and flexible and rigid bodies were defined. Finally, the velocity and acceleration of the robot's center of mass and the midpoint of the transmission line in the XYZ direction, as well as the curve about the torque of the robot’s internal motor are obtained by simulation. The curves of robot centroid displacement and motor torque obtained by software simulation are compared with the simulation results of numerical model, and the difference rate of the results is analyzed. The dynamic relationship between the flexible transmission line, rigid robot and tower are further clarified. A theoretical reference for the optimal design of the electric line robot is provided.
Keywords: robot;transmission line;tower;ADAMS;dynamics
2021, 47(11):75-79  收稿日期: 2021-09-08;收到修改稿日期: 2021-10-06
基金项目: 国家自然科学基金资助项目(51705041);四川省应用基础研究重点项目(18YYJC)
作者简介: 苏睿(1988-),男,四川遂宁市人,副教授,博士,研究方向为机器人动力学分析
参考文献
[1] 魏娟, 郑欣, 向兵. MOTOMAN-HP20D型机器人的运动学分析与仿真[J]. 中国科技论文, 2018, 33(22): 2580-2585
[2] ZHAO H, ZHEN S, CHEN Y H. Dynamic modeling and simulation of multi-body systems using the udwadia-kalaba theory[J]. Chinese Journal of Mechanical Engineering (English Edition), 2013, 2(5): 839-850
[3] ABAD A F, MA O, PHAM K, et al. A review of space robotics technologiesfor on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68(12): 21-26
[4] SANCHEZ P, ARTEAGA M A. Simplied methodology for obtaining the dynamic model of robot manipula- tors[J]. International Journal of Advanced Robotic Systems, 2012, 9(6): 700-709
[5] 邓斌, 李想, 吴文海. 四驱式爬缆机器人结构及动力学分析[J]. 科学技术与工程, 2015, 4(32): 165-167
[6] 魏永乐, 房立金. 双臂巡检机器人沿输电线路行走特性研究[J]. 北京理工大学学报, 2019, 7(8): 164-171
[7] 陶广宏, 房立金. 新型多臂式输电线巡检机器人机构参数设计[J]. 机械设计与制造, 2018, 13(8): 219-222
[8] 毛盾, 邹德华. 高压双分裂输电线路四轮机器人动力学建模与仿真研究[J]. 武汉纺织大学学报, 2021, 32(2): 15-20
[9] AYYILDIZ, MUSTAFA Z, ETINKAYA K. Comparison of four different heuristic optimization algorithms for the inverse kinematics solution of a real 4-DOF serial robot manipulator[J]. Neural Computing & Applications, 2016, 27(4): 825-836
[10] WANG M, LUO M, LI T, et al. A unified dynamic control method for a redundant dual arm robot[J]. Journal of Bionic Engineering, 2015, 12(3): 361-371
[11] FU X, FENG H, GAO X. UAV mobile ground target pursuit algorithm[J]. Journal of Intelligent & Robotic Systems, 2012, 68(3): 359-371
[12] POULIOT N, RICHARD P L, MONTAMBAULT S. Line scout technology opens the way to robotic inspection and maintenance of high-voltage power lines[J]. IEEE Power and Energy Technology System Journal, 2015, 2(1): 1-11
[13] TAKAOKA K, YOKOYAMA K, WAKISAKO H, et al. Development of the fully-automatic live-line maintenance robot-Phase III [C]// IEEE International Symposium on Assembly and Task Planning, 2001. 423-428.
[14] 胡国良, 邓英俊, 喻理梵, 等. 磁流变阻尼器多物理场耦合仿真及动力性能分析[J]. 磁性材料及器件, 2020, 51(6): 14-21, 66.
[15] 董成举, 刘文威, 李小兵. 六轴工业机器人工作空间分析及区域性能研究[J]. 中国测试, 2020, 46(5): 154-160
[16] 胡存, 刘敬猛, 陈伟海. 基于Virtools的仿生六足机器人关节舵机运动仿真[J]. 中国测试, 2012, 38(3): 65-68