您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于领航跟随的多机器人编队控制方法

基于领航跟随的多机器人编队控制方法

1386    2021-11-23

免费

全文售价

作者:高继勋1, 黄全振2, 赵媛媛3

作者单位:1. 河南工程学院计算机学院,河南 郑州 451191;
2. 河南工程学院电气信息学院,河南 郑州 451191;
3. 郑州工程技术学院,河南 郑州450044


关键词:编队控制;多机器人;领航跟随法;差速驱动


摘要:

编队控制是多机器人控制的核心问题之一 。该文针对复杂编队控制问题,提出一种基于领航跟随法的多机器人编队控制策略。通过建立差速驱动机器人运动学模型,引入“虚拟领航机器人”,将编队控制分解为跟随机器人与虚拟领航机器人之间期望距离和角速度的控制,从而完成多机器人之间的编队。通过仿真和实验,表明在较短时间内,跟随机器人运动轨迹与期望轨迹误差趋近于0,其速度也收敛到0.8 m/s,从而证明该机器人编队控制系统有效且稳定。


Multi robot formation control based on leader-follower method
GAO Jixun1, HUANG Quanzhen2, ZHAO Yuanyuan3
1. School of Computer, Henan University of Engineering, Zhengzhou 451191, China;
2. School of Electrical Information Engineering, Henan University of Engineering, Zhengzhou 451191, China;
3. Zhengzhou University of Technology, Zhengzhou 450044, China
Abstract: Formation control is one of the core problems of multi-robot control. In this paper, the authors propose a multi-robot formation control strategy based on the leader-follower method for complex formation control problems. By establishing a kinematic model of differential drive robot and introducing a “virtual leader robot”, the formation control is decomposed into the control of the desired distance and angular velocity between the follower robot and the virtual leader robot, so as to complete the formation between multiple robots. Through simulations and experiments, it is shown that in a short period of time, the trajectory of the follower robot converges to 0 and its velocity converges to 0.8 m/s, thus proving that the robot formation control system designed in this paper is effective and stable.
Keywords: formation control;multi-robot;leader-follower method;differential drive
2021, 47(11):8-13  收稿日期: 2021-06-10;收到修改稿日期: 2021-07-20
基金项目: 国家自然科学联合基金项目(U1804162);国家自然科学基金项目(62173126);河南省高校科技创新团队支持计划(21IRTSTHN017);河南省科技攻关项目(192102210072,212102310551);河南省高等学校重点科研项目(19A520008,20A413002,22A520011)
作者简介: 高继勋(1980-),男,河南洛阳市人,副教授,硕士,研究方向为嵌入式技术、人工智能、图像识别技术
参考文献
[1] 闵海波, 刘源, 王仕成, 等. 多个体协调控制问题综述[J]. 自动化学报, 2012, 38(10): 1557-1570
[2] LIU S, SUN D, ZHU C G. Coordinated motion planning for multiple mobile robots along designed paths with formation requirement[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(6): 1021-1031
[3] 余宏旺, 郑毓蕃. 多智能体系统在分布式采样控制下的动力学行为[J]. 自动化学报, 2012, 38(3): 357-365
[4] DONG X, YU B, SHI Z, et al. Time-varying time-varying formation control for unmanned aerial vehicles: theories and applications[J]. IEEE Transactions on Control Systems Technology, 2015, 23(1): 340-348
[5] 韩青, 孙树栋, 智睿瑞. 轨迹跟踪级联机器人编队控制方法[J]. 控制与决策, 2016, 31(2): 317-323
[6] 宋子浩, 吴斌, 周挺. 输入受限情况下的球形机器人轨迹跟踪控制[J]. 中国测试, 2020, 46(5): 120-126
[7] DESAI J P, OSTROWSKI J, KUMAR V. Controlling formations of multiple mobile robots[C]//Proceedings of IEEE International Conference on Robotics and Automation. Leuven: IEEE, 1998: 2864-2869.
[8] LI X H, XIAO J Z, TAN J D. Modeling and controller design for multiple mobile robots formation control[C]//Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, 2004: 838-843.
[9] LI X, XIAO J, CAI Z. Backstepping based multiple mobile robots formation control[C]//Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on IEEE, 2005: 887-892.
[10] DONG X W, ZHOU Y, REN Z, et al. Time-varying formation control for unmanned aerial vehicles with switching interaction topologies[J]. Control Engineering Practice, 2016, 46: 26-36
[11] WANG R, DONG X W, LI Q D, et al. Distributed adaptive time-varying formation for multi-agent systems with general high-order linear time-invariant dynamics[J]. Journal of the Franklin Institute, 2016, 353(10): 2290-2304
[12] 刘磊. 多移动机器人编队及协调控制研究[D]. 武汉: 华中科技大学, 2009.
[13] RASEKHIPOUR Y, KHAJEPOUR A, CHEN S K, et al. A potential field-based model predictive path-planning controller for autonomous road vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(5): 1255-1267
[14] LEE G, CHWA D. Decentralized behavior-based formation control of multiple robots considering obstacle avoidance[J]. Intelligent Service Robotics, 2018, 11(1): 127-138
[15] 潘无为, 姜大鹏, 庞永杰, 等. 人工势场和虚拟结构相结合的多水下机器人编队控制[J]. 兵工学报, 2017, 38(2): 326-334
[16] DESAI J P, OSTROWSKI J P, KUMAR V. Controlling formations of multiple mobile robots[C]//Proceedings of IEEE International Conference on Robotics and Automation, 1998.
[17] 于涛, 王益博, 孙汉旭, 等. 基于干扰观测器的球形移动机器人直线运动控制[J]. 中国测试, 2019, 45(9): 123-129
[18] HAN T, GUAN Z H, CHI M, et al. Multi-formation control of nonlinear leader-following multiagent systems[J]. ISA Transactions, 2017, 69: 140-147
[19] 黄烨笙, 徐郑攀, 陈远明等. 无人艇自主靠泊控制系统设计[J]. 中国测试, 2020, 46(10): 111-117
[20] 易国, 毛建旭, 王耀南, 等. 非完整移动机器人领航-跟随编队分布式控制[J]. 仪器仪表学报, 2017, 38(9): 2266-2272