登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于S域变换的声压衰减曲线计算方法优化

基于S域变换的声压衰减曲线计算方法优化

149    2021-09-23

¥0.50

全文售价

作者:桂桂1, 高旭2, 孙磊1, 鄂治群1, 尹永钊1, 付志勇1

作者单位:1. 中国测试技术研究院,四川 成都 610021;
2. 中国人民解放军32603部队,四川 成都 610000


关键词:混响时间;声学计量;声压衰减曲线;时间常数


摘要:

针对声学测量设备不同时间常数对声压衰减曲线测量结果影响较大的问题,提出一种基于S域变换的声压衰减曲线计算方法。在分析时间计权声级计算原理的基础上,阐述现行声学测量设备的时间计权声级算法;选择不同的时间常数$\tau$,计算得到各常数下的声压衰减速率;利用时间计权函数特性和卷积定理,通过S域变换与反变换后消除时间计权函数对声压衰减曲线的影响,进而提高混响时间测量的准确性。经过仿真和实验验证,该方法在不同时间常数下的测量结果一致性较好,避免时间常数选择引入的误差,具有一定的参考意义。


Optimization on calculation method of sound pressure attenuation curve based on S-domain transformation
GUI Gui1, GAO Xu2, SUN Lei1, E Zhiqun1, YIN Yongzhao1, FU Zhiyong1
1. National Institute of Measurement and Testing Technology, Chengdu 610021, China;
2. Unit 32603 of the PLA, Chengdu 610000, China
Abstract: Aiming at the problem that different time constants of acoustic measuring equipment has great influence on the measurement results of sound pressure attenuation curve, a calculation method of sound pressure attenuation curve based on S-domain transformation was proposed. Calculation theory of time weighted sound level was researched and therefore time weighted sound level algorithm of the current acoustic measuring equipment was expounded. By choosing different time constants τ, the attenuation rate of sound pressure was calculated. The characteristics of time weighted function and convolution theorem was studied, the influence of the weighting function on the attenuation curve was eliminated through the S-domain transformation and inverse transformation, and the accuracy of the reverberation time measurement was improved. The simulation and experiment results showed that the methods has a good consistency under different time constants, and avoided the error caused by the selection of time constants.
Keywords: reverberation time;acoustic metrology;sound pressure attenuation curve;time constant
2021, 47(9):47-51  收稿日期: 2020-04-29;收到修改稿日期: 2020-05-27
基金项目:
作者简介: 桂桂(1989-),男,河南洛阳市人,工程师,硕士,主要从事声学计量与测试技术研究
参考文献
[1] ARTUR N, MARCELINA O, MICHAŁ M. The effect of acoustical remedies changing the reverberation time for different frequencies in a dome used for worship: A case study[J]. Applied Acoustics, 2020, 160: 107143
[2] 陈新宁. 基于近场声全息的目标反射声场重建方法研究[J]. 中国测试, 2019, 45(11): 31-34+71
[3] 蒲志强, 孙磊, 万正军, 等. 蒙特卡洛法在混响时间测量不确定度评定中的应用[J]. 中国测试, 2020, 46(11): 16-19
[4] 蔡德威, 陈章位. 一种基于DSP的时间计权声级算法[J]. 电声技术, 2015, 39(2): 59-64
[5] 张明铎, 吴胜举, 蒋渭鑫. 积分声级计的时间计权特性对测量LAeq影响的分析[J]. 应用声学, 1994(1): 25-29
[6] 莫方朔, 盛胜我. 声级残差最小二乘非线性拟合法估值混响时间[J]. 同济大学学报(自然科学版), 2007(6): 845-849
[7] 陈剑林, 帅正萍, 白滢,等. 声级计的时间计权特性[J]. 计量技术, 2007(7): 44-46
[8] 熊文波, 孙海涛. 基于脉冲反向积分法的手持式混响时间测量仪的设计[C]. 全国建筑物理学术会议, 2008.
[9] 声级计检定规程: JJG 188—2017 [S]. 北京:中国质检出版社,2017.
[10] 沈科宇, 严华, 申雨. 基于S变换与奇异值分解的大型起重机减速箱故障信号降噪方法[J]. 中国设备工程, 2020(6): 9-15
[11] 牛海清, 宋廷汉, 罗新, 等. 基于S变换与奇异值分解的局部放电信号去噪方法[J]. 华南理工大学学报(自然科学版), 2020, 48(2): 9-15
[12] 王红庆. 分数阶S变换及其在齿轮箱故障诊断中的应用[J]. 电子测量与仪器学报, 2019, 33(8): 133-139