登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于CIR特征参量的NLOS识别方法研究

基于CIR特征参量的NLOS识别方法研究

197    2021-09-23

¥0.50

全文售价

作者:李海1, 解云龙2, 刘月圆2, 叶兴跃2, 韦子辉2

作者单位:1. 河北省计量监督检测研究院,河北 石家庄 050227;
2. 河北大学质量技术监督学院,河北 保定 071002


关键词:超宽带定位;NLOS识别;信道冲击响应


摘要:

多径干扰是超宽带(ultra-wideband,UWB)定位误差的主要来源之一,超宽带信号的非视距传播会导致通信和定位精度的可靠性降低。因此,准确识别定位过程中的非视距(non line of sight,NLOS)传播信号是提高定位精度的重要措施。针对超宽带信号的非视距传播识别问题,该文提出一种新的基于信道冲激响应(channel impulse response,CIR)特征参量—上升时间与峰值时间和(sum of rise time and peak time,Sum_T)与未检测到峰值(undetected peak,UD-P)联合的NLOS识别方法。实验结果表明,典型室内办公环境下NLOS信号的识别率可以达到95.75%,该方法在定位系统中的使用将有助于提升定位精度。


Research on NLOS recognition method based on channel impulse response parameters
LI Hai1, XIE Yunlong2, LIU Yueyuan2, YE Xingyue2, WEI Zihui2
1. Institute of Metrology of Hebei Province, Shijiazhuang 050227, China;
2. School of Quality and Technical Supervision, Hebei University, Baoding 071002, China
Abstract: Multipath interference is one of the main sources of ultra-wideband (UWB) positioning errors. The non-line-of-sight propagation of UWB signals will reduce the reliability of communication and positioning accuracy. Therefore, accurate identification of the non line of sight (NLOS) propagation signal in the positioning process is an important measure to improve the positioning accuracy. Aiming at the identification of non-line-of-sight propagation of ultra-wideband signals, this paper proposes a new channel impulse response (channel impulse response, CIR) characteristic parameter-the sum of rise time and peak time (Sum_T) NLOS identification method combined with undetected peak (UD-P). Experimental results show that the identification rate of NLOS signals can reach 95.75% in an indoor office environment. The use of this method in the positioning system will help further improve positioning accuracy.
Keywords: ultra-wideband location;NLOS recognition;channel impulse response
2021, 47(9):20-25  收稿日期: 2021-04-01;收到修改稿日期: 2021-05-06
基金项目:
作者简介: 李海(1970-),男,河北石家庄市人,高级工程师,研究方向为力学计量、电磁兼容、室内定位等
参考文献
[1] PAN D W, YU Y H. Indoor position system based on improved TDOA algorithm[J]. IOP Conference Series: Materials Science and Engineering, 2019, 585(1): 012075
[2] WANG Z H, SHEN C, FENG G A, et al. A TOA cooperate with AOA location algorithm based on IR-UWB[J]. International Journal of Future Computer and Communication, 2016, 5(1): 61-65
[3] DUAN L F, QIN S, WAN Q. A hybrid localization algorithm based on RSSI assisted precise distance measurement[J]. Journal of the University of Electronic Science and Technology of China, 2019, 48(3): 331-335
[4] 杨刚, 朱士玲, 李强, 等.融合UWB/INS的消防员室内定位与NLOS检测算法[J/OL]. 计算机工程: 1-10 [2021-03-25]. https://doi.org/10.19678/j.issn.1000-3428.0059311.
[5] KHAWAJA W, GUVENC I, CHOWDHURY A. UWB channel measurements and modelling for hurricanes[J]. IET Microwaves, Antennas & Propagation, 2018, 12(10): 1691-1699
[6] CATHERWOOD P A, SCANLON W G. Statistical modelling comparison of wearable UWB signal propagation in antithetical corridor environments[J]. IET Microwaves, Antennas & Propagation, 2019, 13(2): 263-268
[7] LEE K, OH J, YOU K. Closed-form solution of TDOA-based geolocation and tracking: a recursive weighted least square approach[J]. Wireless Personal Communications, 2017, 94(4): 3451-3464
[8] YANG X, ZHAO F, CHEN T. NLOS identification for UWB localization based on import vector machine[J]. AEU - International Journal of Electronics and Communications, 2018, 87: 128-133
[9] YU K, WEN K, LI Y, et al. A novel NLOS mitigation algorithm for UWB localization in harsh indoor environments[J]. IEEE Transactions on Vehicular Technology, 2018: 686-699
[10] 张浩, 梁晓林, 吕婷婷, 等. 一种新颖的基于偏度的非视距区分算法[J]. 电讯技术, 2015, 55(5): 484-490
[11] GUVENC I, CHONG C C, WATANABE F. NLOS identification and mitigation for UWB localization systems[C]//IEEE Wireless Communications & Networking Conference. IEEE, 2007.
[12] NGUYEN T V, JEONG Y, SHIN H, et al, Machine learning for wideband localization[C]. IEEE J. Sel. Areas Commun., 2015, 33(7): 1357-1380.
[13] SAVIC V, LARSSON E G, FERRER-COLL J, et al. Kernel methods for accurate UWB-based ranging with reduced complexity[J]. IEEE Transactions on Wireless Communications, 2016, 15(3): 1783-1793
[14] 王振朝, 曹永青, 韦子辉. 基于WSN的射频定位技术[J]. 河北大学学报(自然科学版), 2013, 33(5): 554-560
[15] 李小亭, 郎月新, 韦子辉, 等. 基于改进双向双边测距的超宽带定位技术及应用研究[J]. 中国测试, 2019, 45(10): 21-27