您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>侵彻效应混凝土靶HJC本构模型研究

侵彻效应混凝土靶HJC本构模型研究

2383    2021-07-27

免费

全文售价

作者:米振国, 石云波, 张婕, 滑志成, 都捷豪

作者单位:中北大学 电子测试技术重点实验室,山西 太原 030051


关键词:HJC本构模型;数值模拟;采集存储测试系统;侵彻;混凝土


摘要:

为获取一组适用于130 mm穿甲弹侵彻混凝土靶的参数,并应用于大质量卵形弹头侵彻厚混凝土靶,通过对HJC模型参数分类和利用有限元软件ANSYS和LS-DYNA对穿甲弹侵彻进行数值模拟,研究影响加速度峰值大小的参数,取模型各个参数的10%对加速度峰值大小的影响进行比较,并对其排序,发现压碎压力影响最大达16.5%。通过弹体搭载采集存储测试系统,获取加速度信号进而转化为速度和位移。在调整仿真加速度峰值和脉宽一致的情况下,得到速度和位移与实际情况相符,侵彻混凝土实验和数值模拟相互验证,提高模型和测试的准确性。


Research on concrete target HJC constitutive model based on penetration effect
MI Zhenguo, SHI Yunbo, ZHANG Jie, HUA Zhicheng, DU Jiehao
Science and Technology on Electronic Test & Measurement Laboratory, North University of China, Taiyuan 030051, China
Abstract: In order to obtain a set of parameters suitable for 130 mm armor-piercing concrete target, and applied to large mass ovate warhead penetrating thick concrete target. Through the parameter classification of HJC model and the numerical simulation of penetration of arrow-piercing projectile by using finite element software ANSYS and LS-DYNA, the parameters affecting the peak acceleration were studied. The influence of 10% of each parameter of the model on the peak acceleration was compared and ranked, and it was found that the influence of crushing pressure reaches the maximum of 16.5%. The acquisition, storage and testing system was carried on the missile body to obtain acceleration signals, which were then converted into velocity and displacement. Under the condition that the simulation acceleration peak and pulse width were consistent, the velocity and displacement obtained were consistent with the actual situation, and the penetration concrete experiment and numerical simulation were mutually verified to improve the accuracy of the model and test.
Keywords: HJC constitutive model;numerical simulation;acquisition and storage test system;penetration;concrete
2021, 47(7):31-35  收稿日期: 2020-07-15;收到修改稿日期: 2020-09-04
基金项目: 电子测试重点实验室稳定支持经费项目(WD61420010411804)
作者简介: 米振国(1995-),男,山西吕梁市人,硕士研究生,专业方向为系统仿真和靶场测试
参考文献
[1] JOHNSON H G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures[J]. Journal of Applied Mechanics, 2011, 78(5): 1-9
[2] KONG X, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model[J]. International journal of impact engineering, 2016, 95: 61-71
[3] TU Z, LU Y. Modifications of RHT material model for improved numerical simulation of dynamic response of concrete[J]. International Journal of Impact Engineering, 2010, 37(10): 1072-1082
[4] LS-DYNA keyword user’s manual[Z]. California: LSTC, 2015.
[5] 陈星明, 刘彤, 肖正学. 混凝土HJC 模型抗侵彻参数敏感性数值模拟研究[J]. 高压物理学报, 2012, 26(3): 313-317
[6] 汪衡, 董静, 顾振中, 等. HJC模型参数对侵彻效应影响度的数值研究[J]. 兵器装备工程学报, 2020, 41(3): 200-204
[7] 任根茂, 吴昊, 方秦, 等. 普通混凝土 HJC 本构模型参数确定[J]. 振动与冲击, 2016, 35(18): 9-15
[8] 尹晓娟. 新型快通修补材料与道面混凝土基材粘结性能研究[J]. 中国测试, 2020, 46(9): 154-160
[9] 彭永, 卢芳云, 方秦, 等. 弹体侵彻混凝土靶体的尺寸效应分析[J]. 爆炸与冲击, 2019, 39(11): 58-68
[10] 张社荣, 宋冉, 王超, 等. 碾压混凝土HJC动态本构模型修正及数值验证[J]. 振动与冲击, 2019, 38(12): 25-31
[11] 雷霆. 压电冲击传感器动态响应研究[D]. 北京: 中国北京工程物理研究院, 2019.
[12] 林琛, 徐建军, 杨晋伟, 等. 基于 HJC 模型的钢筋混凝土侵彻仿真失效准则与参数[J]. 探测与控制学报, 2017, 39(2): 100-105
[13] 熊益波, 陈剑杰, 胡永乐, 等. 混凝土Johnson- Holmquist本构模型关键参数研究[J]. 工程力学, 2012, 29(1): 121-127