您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>EBS桥模块响应特性检测气控系统仿真与设计

EBS桥模块响应特性检测气控系统仿真与设计

1289    2021-03-24

免费

全文售价

作者:陈泽琦1, 范伟军1,2, 李君1, 郭斌1,2

作者单位:1. 中国计量大学,浙江 杭州 310018;
2. 杭州沃镭智能科技股份有限公司,浙江 杭州 310018


关键词:EBS桥模块;响应特性;气路检测


摘要:

EBS桥模块是汽车桥制动的核心部件,目前国内关于EBS桥模块性能检测气控系统的设计没有统一的标准,检测气路设计标准不同会导致检测数据不一致,使得检测结果无法对比分析。针对这一现状,基于EBS桥模块结构及其工作原理,建立桥模块响应特性检测气控系统的数学模型,包括桥模块气室模型、电磁学模型、运动力学模型,以及测试管路数学模型,利用Matlab/Simulink仿真软件搭建检测气控系统的仿真模型,对桥模块常规及电控响应特性进行仿真,提出响应特性影响因素:管路孔径、管路长度、负载储气罐容积,并进行仿真验证。结果表明:管路孔径、管路长度、负载储气罐容积均会影响响应特性测试参数,其最佳值分别为12 mm、500 mm、1 L。通过与实际检测结果对比,验证仿真模型的准确性及仿真分析的有效性,为EBS桥模块响应特性检测气控系统的设计及完善奠定理论基础。


Simulation and design of air control system for response characteristics detection of EBS axle modulator
CHEN Zeqi1, FAN Weijun1,2, LI Jun1, GUO Bin1,2
1. China Jiliang University, Hangzhou 310018, China;
2. Hangzhou Wolei Intelligent Technology Co., Ltd., Hangzhou 310018,China
Abstract: The EBS axle modulator is the core component of automobile axle braking. At present, there is no unified standard for the design of the air control system for the performance detection of the EBS axle modulator in China. Different design standards will lead to inconsistent test data and test results. In view of this situation, based on the structure of the EBS axle modulator and its working principle, a mathematical model of the response characteristic detection air control system has been established, including the air chamber model, electromagnetic model, kinematics model and inspection pipeline model. The simulation model of the air control system has been built using Matlab/Simulink software. The conventional and electronic control response characteristics have been simulated, the influencing factors of the response characteristics: pipeline aperture, pipeline length, and load storage tank volume have been proposed and analyzed. The results show that: the pipeline aperture, pipeline length, and load storage tank volume all affect the response characteristic test parameters, and their optimal values are 12 mm, 500 mm, and 1 L. By comparing with the actual test results, the accuracy of the simulation model and the effectiveness of the simulation analysis are verified, which lays a theoretical foundation for the design and improvement of the EBS axle modulator response characteristics detection air control system.
Keywords: EBS axle modulator;response characteristics;gas circuit detection
2021, 47(3):126-132,176  收稿日期: 2020-04-23;收到修改稿日期: 2020-05-06
基金项目: 浙江省大学生科技创新计划(新苗人才计划)项目(2019R409041)
作者简介: 陈泽琦(1996-),男,浙江慈溪市人,硕士研究生,专业方向为汽车电子、检测技术、自动化装置等
参考文献
[1] 罗文发, 张庶凯. 电子制动系统(EBS)技术[J]. 汽车与配件, 2009(12): 73-75
[2] 李佳鹏. 汽车性能检测技术的发展[J]. 黑龙江科技信息, 2009(9): 10
[3] 安宗权, 余道和. 汽车仪表技术现状与展望[J]. 中国新技术新产品, 2011(11): 170-171
[4] 张佳琛. 商用车EBS系统桥控模块建模和特性研究[J]. 汽车实用技术, 2019(5): 112-115
[5] 杭州沃镭智能科技股份有限公司. 一种EBS双通道桥模块性能检测装置及检测方法: CN109883724A[P]. 2019-06-14.
[6] 梅宗信, 李开国, 马国华, 等. 汽车防抱制动系统气压电磁调节器台架试验方法的探讨[J]. 汽车工程,2010,32(9): 807-813.
[7] LU Y, XU B W, GUO B. Dynamic modeling and experimental verification of bus pneumatic brake system[J]. The Open Mechanical Engineering Journal, 2015, 9(1): 52-57
[8] SMC(中国)有限公司. 现代实用气动技术[M]. 北京: 机械工业出版社, 2008.
[9] 娄路亮, 王海洲. 电磁阀设计中电磁力的工程计算方法[J]. 导弹与航天运载技术, 2007(1): 40-45
[10] 张正原, 胡娓. 电磁阀设计中电磁力自动计算方法[J]. 现代机械, 2001(3): 20-23
[11] 刘合群, 王志满, 廖传林, 等. 液压与气压传动[M]. 武汉: 华中科技大学出版社, 2013.
[12] 赵晨馨. 汽车制动钳所需液量检测系统设计及研究[D]. 杭州: 中国计量大学, 2017.
[13] 马志浩, 刘清霖, 王印, 等. 基于STAR-CCM+建模的管路压力损失仿真分析[J]. 客车技术与研究, 2019, 41(2): 9-11