您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>成形磨砂轮圆弧廓形关键参数在位检测方法及试验研究

成形磨砂轮圆弧廓形关键参数在位检测方法及试验研究

1318    2021-03-24

免费

全文售价

作者:师超钰1,2, 朱建辉1,2, 孙冠男1,2, 郭泫洋1,2, 王洁浩1,2, 包华1,2

作者单位:1. 超硬材料磨具国家重点实验室,河南 郑州 450001;
2. 郑州磨料磨具磨削研究所有限公司,河南 郑州 450001


关键词:成形磨削;在位检测;曲率半径;圆度误差


摘要:

针对成形磨砂轮精密磨削加工中准确高效地检测砂轮形状精度的需求,提出砂轮廓形参数在位检测新方法。首先采用线状激光位移传感器采集砂轮表面微观形貌数据,构建测量矩阵模型,再通过滤波去噪、宏观轮廓线提取、非线性曲线拟合等算法分析处理出砂轮廓形曲率半径和圆度误差检测指标。通过磨削验证试验分析和检测不确定度评定,证明该方法稳定可靠,检测结果可以准确反映工件加工精度,满足复杂圆弧廓形砂轮检测需求,具有较好的工程应用价值。


In-situ measuring method and experimental research on key circular-arc profile parameters of form grinding wheel
SHI Chaoyu1,2, ZHU Jianhui1,2, SUN Guannan1,2, GUO Xuanyang1,2, WANG Jiehao1,2, BAO Hua1,2
1. State Key Laboratory of Superabrasives, Zhengzhou 450001, China;
2. Zhengzhou Research Institute for Abrasive & Grinding Co., Ltd., Zhengzhou 450001, China
Abstract: Aiming at the requirement for accurate and efficient detection of grinding wheel profile parameters in forming precision grinding processing, an in-situ measuring method for wheel profile parameters was proposed without precedent. Firstly, the grinding wheel global surface micro-topography data was measured through a linear laser displacement sensor, which constructed the measurement matrix model. Secondly, the matrix model was analyzed and processed through the algorithms of filtering, contour line extracting, non-linear curve-fitting, etc. Finally, the curvature radius and roundness error of wheel profile was calculated. The detection results of grinding verification experiment and uncertainty evaluation show that the new method is stable, reliable and can predict grinding accuracy, which can satisfy the detection requirement for wheel circular-arc profile. It is of great significance for the engineering application.
Keywords: form grinding;in-situ measurement;curvature radius;roundness error
2021, 47(3):36-42  收稿日期: 2020-02-25;收到修改稿日期: 2020-04-08
基金项目: 国家重点研发计划项目(2018YFB2000502)
作者简介: 师超钰(1988-),男,河南郑州市人,工程师,硕士,研究方向为智能磨削监控与测试
参考文献
[1] CHEN F J, YIN S H, HUANG H, et al. Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement[J]. International Journal of Machine Tools and Manufacture, 2010, 50(5): 480-486
[2] 沈飞, 王辉, 周岚. 超高速光学扫描测量方法的准确度验证实验[J]. 中国测试, 2020, 46(2): 23-27
[3] Malkin S. 磨削技术理论与应用[M]. 蔡光起, 巩亚东, 宋贵亮, 译. 沈阳: 东北大学出版社, 2002.
[4] GUO Y B, CHEN B K, ZHANG Y. Research on parallel grinding method of non-axisymmetric aspheric lens[J]. Chinese Journal of Mechanical Engineering, 2004, 17(1): 149-151
[5] 张宁宁, 王振忠, 潘日, 等. 平行磨削非轴对称非球面光学元件表面形貌[J]. 强激光与粒子束, 2012, 24(6): 1391-1395
[6] 周旭光, 阎秋生, 孔令叶, 等. 砂轮几何参数对非球面轨迹包络磨削的影响研究[J]. 工具技术, 2015, 49(8): 23-26
[7] 崔长彩, 余卿, 张遨, 等. 金刚石砂轮表面形貌测量系统[J]. 光学精密工程, 2014, 22(12): 3167-3174
[8] 谢晋, 党希敏. 圆弧形金刚石砂轮的数控对磨成形修整试验[J]. 机械工程学报, 2008, 44(2): 102-107
[9] 顾铁玲, 王海丽, 胡德金, 等. 基于计算机视觉的砂轮磨损状态的在线检测[J]. 机械科学与技术, 2007, 26(9): 1147-1150
[10] 迟玉伦, 李郝林. 基于声发射监测的金刚石砂轮修整技术研究[J]. 制造技术与机床, 2010(9): 99-102
[11] 陈冰, 郭兵, 赵清亮, 等. 树脂基圆弧金刚石砂轮的在位精密成形修整技术[J]. 机械工程学报, 2016, 52(11): 193-200
[12] 周炼, 安晨辉, 侯晶, 等. 圆弧金刚石砂轮三维几何形貌的在位检测和误差评价[J]. 光学精密工程, 2017, 25(12): 3079-3088
[13] 胡红波, 季文晖. 测量方程、观测方程与不确定度评估[J]. 中国测试, 2020, 46(9): 7-12