您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>穿孔管串并联耦合消声结构研究

穿孔管串并联耦合消声结构研究

1556    2021-03-24

免费

全文售价

作者:陈龙虎1, 李立涛2, 蔺强2, 韩冬1, 吕海峰1

作者单位:1. 中北大学机械工程学院,山西 太原 030051;
2. 河北亚大汽车塑料制品有限公司,河北 涿州 072750


关键词:宽频噪声;串并联耦合;模态分析;传递损失


摘要:

涡轮增压器进气管道的气动噪声严重影响着汽车的安全性和舒适度,由于穿孔管对中高频率宽频噪声具有良好的消声性能,因而得到广泛应用。该文设计一种模块化穿孔管串并联耦合的消声器结构,在分析消声器在常温无流与气固耦合状态下的模态频率与振型的基础上,研究气流流速对消声器模态频率和振型的影响规律以及消声器内部的气流再生噪声,气流的存在抑制消声器的消声效果,但并不改变整体趋势。利用COMSOL软件声固耦合模块计算消声器的传递损失,仿真结果表明该消声器在470~4500 Hz频率范围内的传递损失幅值均为20 dB及以上,有效地衰减中高频率噪声。实验结果与仿真结果的上限频率和下限频率基本吻合,但在2400~3500 Hz频率范围内幅值偏差较大。


Research on series and parallel coupling muffler structure of perforated pipe
CHEN Longhu1, LI Litao2, LIN Qiang2, HAN Dong1, Lü Haifeng1
1. School of Mechanical Engineering, North University of China, Taiyuan 030051, China;
2. Hebei Chinaust Automotive Plastics Co., Ltd., Zhuozhou 072750, China
Abstract: The aerodynamic noise of the turbocharger intake pipeline has a serious impact on the safety and comfort of the vehicle. Because the perforated tube has a good noise reduction performance for the medium and high frequency broadband noise, it has been widely used. In this paper, we design a modular parallel of perforated tube muffler structure of coupling, on the analysis of the muffler in the condition of normal temperature without flow and gas solid coupling of the modal frequency and vibration mode on the basis of the study of airflow velocity influence on modal frequency and vibration mode muffler and muffler internal flow regeneration noise, the existence of the airflow suppresses the noise elimination effect of muffler, but does not change the overall trend. The acoustic solid coupling module of COMSOL software was used to calculate the transmission loss of the muffler. The simulation results showed that the transmission loss amplitude of the muffler in the frequency range of 470–4500 Hz reached more than 20 dB, effectively attenuating the medium-high frequency noise. The experimental results are basically consistent with the upper and lower frequencies of the simulation results, but the amplitude deviation is large in the frequency range of 2400–3500 Hz.
Keywords: broadband noise;series and parallel coupling;modal analysis;transmission loss
2021, 47(3):9-15  收稿日期: 2020-05-27;收到修改稿日期: 2020-06-24
基金项目: 国家青年基金(51305409);山西省青年科技研究基金项目(2013021020-2)
作者简介: 陈龙虎(1996-),男,安徽宿州市人,硕士研究生,专业方向为振动与噪声控制研究
参考文献
[1] SULLIVAN J W, CROCKER M J. Analysis of concentric‐tube resonators having unpartitioned cavities[J]. Journal of the Acoustical Society of America, 1978, 64(1): 207-215
[2] RAO K N, MUNJAL M L. Experimental evaluation of impendance of perforates with grazing flow[J]. Journal of sound and vibration, 1986, 123(2): 283-295
[3] 康钟绪. 消声器及穿孔元件声学特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
[4] MUNJAL M L. Analysis and design of pod silencers[J]. Journal of Sound and Vibration, 2003, 262(3): 497-507
[5] COX T J, ANTONIO P D. Acoustic absorbers and diffusers [M]. New York: Taylor and Francis, 2009.
[6] 张孟浩, 左曙光, 相龙洋, 等. 双层微穿孔管消声器传声损失理论计算与分析[J]. 中南大学学报(自然科学版), 2015(2): 505-511
[7] 侯九霄, 朱海潮, 毛荣富. 渐变截面背腔微穿孔管消声器声传递特性分析[J]. 振动与冲击, 2019, 38(14): 189-194
[8] 黄虹溥, 季振林, 陈志响, 等. 穿孔管消声器声学特性预测的单向耦合计算方法[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(4): 367-372
[9] 凌桂龙, 丁金滨, 温正. ANSYS Workbench 13.0从入门到精通[M]. 北京: 清华大学出版社, 2012.
[10] 赵丙文, 王淑芳, 宋志良, 等. 基于Ansys workbench汽车排气系统模态分析及优化设计[J]. 内燃机与配件, 2020(10): 10-12
[11] 吕金磊, 彭强, 王海锋. 管道中微穿孔板吸声结构声学性能测试与分析[J]. 噪声与振动控制, 2016, 36(1): 200-203
[12] 陈龙虎. 声学超材料对低频噪声的消声特性[J]. 应用声学, 2020, 39(3): 438-444.
[13] 曲波, 朱蓓丽. 驻波管中隔声量的四传感器测量法[J]. 噪声与振动控制, 2002, 22(6): 44-46