您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>电子探针在有源光纤定量分析中的应用

电子探针在有源光纤定量分析中的应用

1581    2021-02-07

免费

全文售价

作者:李明辉1,2, 郜鲜辉1, 吴金金1, 丁雨葵1, 宋武林1,2

作者单位:1. 华中科技大学分析测试中心 ,湖北 武汉 430070;
2. 华中科技大学材料科学与工程学院,湖北 武汉 430070


关键词:电子探针;有源光纤;超轻元素;稀土元素;定量分析


摘要:

为给有源光纤的工艺开发和性能研究提供有力支撑,该文利用场发射型电子探针EPMA-8050G对光纤纤芯的元素掺杂微区进行系统的定性定量分析,进一步研究石英基质的测试特点以及测试条件对样品烧蚀的影响。能谱仪(EDS)和波谱仪(WDS)的定性分析结果表明,分析含量较低的元素如稀土元素Yb和轻元素F时,WDS有明显的优势。状态分析结果表明,石英基质有源光纤的定量分析最佳条件为加速电压15 kV,束流20 nA。利用该文确定的定量分析方法测试两种有源光纤,成分总量均在100%±2%以内,在光纤类样品的分析中可以得到准确可靠的结果。


Application of EPMA in quantitatively analysis of active optical fiber
LI Minghui1,2, GAO Xianhui1, WU Jinjin1, DING Yukui1, SONG Wulin1,2
1. Analytical and Testing Center, Huazhong University of Science and Technology,Wuhan 430070, China;
2. School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract: In order to provide strong support for the process development and performance research of active fiber, the field emission electron probe micro-analyzer EPMA-8050G was used to conduct systematic qualitative and quantitative analysis of the micro area of fiber core after elements doping, the characteristics of quartz matrix and the influence of test conditions on sample ablation were further studied. Qualitative analysis results of energy disperse spectroscopy (EDS) and wavelength dispersive spectrometer (WDS) show that WDS has obvious advantages when analyzing elements with low content, such as rare earth element Yb and light element F. The state analysis results show that the optimal quantitative analysis conditions for active fiber with quartz matrix are accelerating voltage 15 kV and beam current 20 nA. The quantitative analysis method determined in this paper is used to test two kinds of active fibers, the total components are within 100%±2%, and the accurate and reliable results can be obtained in the analysis of fiber samples.
Keywords: electron probe microanalysis (EPMA);active optical fiber;ultra-light element;rare earth element;quantitative analysis
2021, 47(2):74-80  收稿日期: 2020-08-21;收到修改稿日期: 2020-09-25
基金项目: 华中科技大学2020年实验技术研究项目(0134505006)
作者简介: 李明辉(1990-),女,河南商丘市人,工程师,硕士,研究方向为纳米材料及微区分析技术
参考文献
[1] 余霞, 罗佳琪, 肖晓晟, 等. 高功率超快光纤激光器研究进展[J]. 中国激光, 2019, 46(5): 05080071-12
[2] 董淑福, 陈国夫, 赵尚弘, 等. 高功率多模铒镱共掺双包层光纤激光器的研究[J], 激光技术, 2006, 30(4): 366-369.
[3] NILSSON J, PAYNE D N. High-power fiber lasers[J]. Science, 2011, 332(6032): 921-922
[4] CHEN Y, ZHAO N, LIU J T, et al. Characterization of optical properties and laser behavior in Yb3+/Al3+ codoped microstructure optical fiber[J]. Journal of Non-Crystalline Solids. 2019, 526(119700): 1-6.
[5] 马云秀. 掺镱光纤发光特性及激光器研究[D]. 武汉:华中科技大学, 2019.
[6] 李卢丹, 白雪, 胡耀升. 光纤光栅传感器用于飞行试验应变测量的可行性研究[J]. 中国测试, 2020, 46(5): 45-50
[7] LIU S, ZHAN H, PENG K, et al. Fabrication and laser performance of triple-clad Yb-doped aluminophosphosilicate fiber[J]. Optical Fiber Technology, 2018, 46: 297-301
[8] 陈瑰, 蒋作文, 彭景刚, 等. 空气包层大模场面积掺镱光子晶体光纤研究[J]. 物理学报, 2012, 61(14): 144206-1-6。
[9] 陈瑰. 用于高功率激光器和放大器的掺镱光纤研究[D]. 武汉:华中科技大学, 2014.
[10] ZHANG Y M, SUN Y, WEN J X, et al. Investigation on the formation and regulation of yttrium aluminosilicate fiber driven by spontaneous element migration[J]. Ceramics International, 2019, 45(15): 19182-19188
[11] JIANG J L, ZHAN H, PENG K, et al. Laser performance and material characters of commercial Ce/Yb co-doped aluminosilicate binary glass fiber[J]. Optik - International Journal for Light and Electron Optics, 2019, 180: 932-938
[12] JETSCHKE S, UNGER S, SCHWUCHOW A, et al. Efficient Yb laser fibers with low photodarkening by optimization of the core composition[J]. Opt. Express, 2008, 16(20): 15540-15545
[13] 李明辉, 郜鲜辉, 吴金金, 等. 电子探针波谱仪和能谱仪在材料分析中的应用及对比[J]. 电子显微学报, 2020, 39(2): 218-223
[14] LLOVET X, MOY A, PINARD P T, et al. Electron probe microanalysis: a review of recent developments and applications[J]. Progress in Materials Science, 2020, 100673: In press
[15] 电子探针定量分析方法通则:GB15074—2008[S]. 北京:中国标准出版社,2008.
[16] 稀土氧化物的电子探针定量分析方法:GB/T 15245—2002[S].北京:中国标准出版社,2002.
[17] WEILL D, RICE J, SHAFFER M, et al. Electron beam microAnalysis theory and application[M]. Center for Advanced Materials Characterization in Oregon, University of Oregon Department of Geological Sciences and Department of Chemistry, 2013.