登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于LFM的橡胶脱粘超声检测方法研究

基于LFM的橡胶脱粘超声检测方法研究

283    2021-02-07

¥0.50

全文售价

作者:侯大伟, 王雪梅, 倪文波

作者单位:西南交通大学机械工程学院,四川 成都 610031


关键词:橡胶脱粘;线性调频;超声检测;小波包;奇异值分解


摘要:

针对SYS510e型空气弹簧底板的金属橡胶粘接结构橡胶脱粘缺陷超声检测难以辨识问题,提出采用改进的线性调频脉冲代替传统窄脉冲作为超声波激励信号,增大超声检测的信号能量和频谱宽度。在宽频带超声检测的基础上,采用小波包-奇异值分解方法解析超声回波在不同粘接状态、不同频率范围的时频能量分布,提取更稳定、一致性更好的橡胶脱粘辨识特征值。根据特征训练BP神经网络对空气弹簧的橡胶脱粘缺陷进行超声C扫描检测。结果显示,基于改进的线性调频脉冲激励的超声检测方法能够准确有效地辨识橡胶脱粘缺陷的位置和轮廓,满足对SYS510e型空气弹簧的超声脱粘检测需求。


Research on ultrasonic detection for rubber debonding based on LFM
HOU Dawei, WANG Xuemei, NI Wenbo
College of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
Abstract: In view of the problem that the ultrasonic detection of the metal rubber bonding structure of the SYS510e air spring base plate is difficult to identify the rubber debonding defect, the improved linear frequency modulation is proposed to replace the traditional narrow pulse as the ultrasonic excitation signal, which increases the signal energy and spectrum width of ultrasonic detection. Based on wide-band ultrasonic detection, wavelet packet and singular value decomposition method is used to analyze the time-frequency energy distribution of ultrasonic echo in different bonding states and frequency ranges, and more stable and consistent identification eigenvalues of rubber debonding are extracted. According to the features training BP neural network, the rubber debonding defect of air spring was detected by ultrasonic C-scan. The results show that the ultrasonic detection based on the improved linear frequency modulation can accurately and effectively identify the location and contour of rubber debonding defects, and meet the needs of the ultrasonic debonding detection of SYS510e air spring
Keywords: rubber debonding;linear frequency modulation;ultrasound detection;wavelet packet;singular value decomposition
2021, 47(2):50-55  收稿日期: 2019-07-20;收到修改稿日期: 2019-09-13
基金项目: 上海铁路局科研计划项目(2018067)
作者简介: 侯大伟(1995-),男,吉林通化市人,硕士研究生,专业方向为超声无损检测
参考文献
[1] 周正干, 刘斯明. 非线性无损检测技术的研究、应用和发展[J]. 机械工程学报, 2011, 47(8): 2-11
[2] 杨剑, 高成强, 刘晓方. 超声激励方式对检测信号的影响[J]. 无损检测, 2010, 32(1): 36-38
[3] 温银堂, 张松, 张玉燕, 等. 新型复合材料界面粘接缺陷的CT检测及表征[J]. 中国测试, 2020, 46(1): 12-17
[4] 凡丽梅, 董方旭, 安志武, 等. 橡胶/铝合金粘接构件脱粘缺陷非线性超声检测技术研究[J]. 中国测试, 2020, 46(8): 15-21,43
[5] WANG M, CONG S, ZHANG S. Pseudo chirp-barkergolay coded excitation in ultrasound imaging[C]//2018 Chinese Control and Decision Conference (CCDC), 2018.
[6] 郭佳妮. 编码激励技术在超声诊断中的应用研究[J]. 自动化与仪器仪表, 2017(6): 224-225
[7] 刘昊晨, 梁红. 线性调频信号参数估计和仿真研究[J]. 计算机仿真, 2011, 28(2): 157-159,263
[8] 陈灿辉, 程海涛, 刘建勋. 轨道交通用空气弹簧的结构与应用研究[J]. 铁道机车车辆, 2010, 30(6): 49-53
[9] 石明江, 罗仁泽, 付元华. 小波和能量特征提取的旋转机械故障诊断方法[J]. 电子测量与仪器学报, 2015, 29(8): 1114-1120
[10] 陈恩利, 张玺, 申永军, 等. 基于SVD降噪和盲信号分离的滚动轴承故障诊断[J]. 振动与冲击, 2012, 31(23): 185-190