您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>超临界二氧化碳物性参数测量方法综述

超临界二氧化碳物性参数测量方法综述

2236    2021-02-07

免费

全文售价

作者:高明, 申楠楠, 章立新, 杨其国, 刘婧楠

作者单位:上海理工大学能源与动力工程学院 上海市动力工程多相流动与传热重点实验室,上海 200093


关键词:超临界二氧化碳;物性测量;粘度;密度;热导率


摘要:

对于超临界二氧化碳(S-CO2)物性参数的获取,一般可从美国国家标准与技术研究院(NIST)直接查询,但S-CO2在临界点处物性发生剧烈变化。在实际工业应用中,S-CO2的密度、粘度和热导率这3个方面对与超临界二氧化碳布雷顿循环的研究有着很重要的作用,为了解目前S-CO2物性的测量方法,该文对当前所涉及到的S-CO2基本物性测量方法进行梳理,包括密度测量法中的可变体积法、单双沉浮法、振动管法;导热率测量法中的平板法、双圆筒和热线法;粘度测量中的落球法、粒子沉降法、旋转体法、振动盘法、振动线法。在对物性测量方法的整理后,提出可使用振动梁法测量S-CO2的密度,振动线法测量S-CO2的粘度,平板法测量S-CO2的热导率。


Review of measurement methods for physical parameters of supercritical carbon dioxide
GAO Ming, SHEN Nannan, ZHANG Lixin, YANG Qiguo, LIU Jingnan
Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract: The physical properties of supercritical carbon dioxide (S-CO2) change drastically at the critical point. The acquisition of physical properties of S-CO2 can generally be directly inquired from the National Institute of Standards and Technology. In practical industrial applications, the three aspects of S-CO2 density, viscosity and thermal conductivity play an important role in the research of supercritical carbon dioxide Brayton cycle. In order to understand the current measurement methods of S-CO2 physical properties, this article presents the basic physical properties measurement methods of S-CO2 involved, introducing variable volume method, single/ double sinking densitometer and vibrating tube method to measure density; falling ball method, particle-velocity method, rotating cylinder body method, oscillating-disk viscometer and vibrating-wire viscometer; parallel plate method, concentric cylinder and hot wire transient method to measure thermal conductivity. After finishing the physical property measurement methods, it was found that the vibrating cantilevers method can be used to measure the density of S-CO2, the vibrating-wire method can be used to measure the viscosity of S-CO2 and the parallel plate method to measure the thermal conductivity of S-CO2.
Keywords: S-CO2;physical property measurement;viscosity;density;thermal conductivity
2021, 47(2):32-43  收稿日期: 2020-07-24;收到修改稿日期: 2020-08-25
基金项目: 国家自然科学基金(51976127)
作者简介:
参考文献
[1] 柳愿. 平行管式井下超临界二氧化碳射流混砂装置的研究[D]. 西安: 西安石油大学, 2019.
[2] 汪海斌, 杨景峰. CO2超临界流体可控冷却淬火技术[J]. 金属热处理, 2019, 44(4): 121-6
[3] 王元元. 超临界二氧化碳对页岩力学参数的影响研究[D]. 北京: 中国石油大学(北京), 2018.
[4] XU J, LIU C, SUN E, et al. Perspective of S-CO2 power cycles[J]. Energy, 2019, 186: 115831
[5] FENGHOUR A, WAKEHAM W A, FERGUSON D, et al. Automated isochoric apparatus for the measurement of density of fluid mixtures at temperatures from 298.15 K to 773.15 K and pressures up to 40 MPa: results for helium and for nitrogen[J]. Journal of Chemical Thermodynamics, 1993, 25(7): 831-845
[6] SPAN R, WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596
[7] FENGHOUR A, WAKEHAM W A, WATSON J T R. Amount-of-substance density of CO2 at temperatures from 329 K to 698 K and pressures up to 34 MPa[J]. Journal of Chemical Thermodynamics, 1995, 27(2): 219-223
[8] KIRAN E, PÖHLER H, XIONG Y. Volumetric properties of pentane + carbon dioxide at high pressures[J]. Journal of Chemical & Engineering Data, 1996, 41(2): 158-165
[9] AND H P, KIRAN E. Volumetric properties of carbon dioxide + acetone at high pressures[J]. Journal of Chemical & Engineering Data, 1997, 41(3): 379-383
[10] DUSCHEK W, KLEINRAHM R, WAGNER W. Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide I. The homogeneous gas and liquid regions in the temperature range from 217 K to 340 K at pressures up to 9 MPa[J]. Journal of Chemical Thermodynamics, 1990, 22(9): 827-840
[11] KLEINRAHM R, WAGNER W. Measurement and correlation of the equilibrium liquid and vapour densities and the vapour pressure along the coexistence curve of methane[J]. Journal of Chemical Thermodynamics, 1986, 18(8): 739-760
[12] GILGEN R, KLEINRAHM R, WAGNER W. Supplementary measurements of the (pressure, density, temperature) relation of carbon dioxide in the homogeneous region at temperatures from 220 K to 360 K and at pressures up to 13 MPa[J]. Journal of Chemical Thermodynamics, 1992, 24(12): 1243-1250
[13] MCLINDEN M O, L SCH-WILL C. Apparatus for wide-ranging, high-accuracy fluid (p, ρ, T) measurements based on a compact two-sinker densimeter[J]. The Journal of Chemical Thermodynamics, 2007, 39(4): 507-530
[14] KLIMECK J, KLEINRAHM R, WAGNER W. An accurate single-sinker densimeter and measurements of the (p, ρ, T) relation of argon and nitrogen in the temperature range from (235 to 520) K at pressures up to 30 MPa[J]. Journal of Chemical Thermodynamics, 1998, 30(12): 1571-1588
[15] WAGNER W, BRACHTHÄUSER K, KLEINRAHM R, et al. A new, accurate single-sinker densitometer for temperatures from 233 to 523 K at pressures up to 30 MPa[J]. International Journal of Thermophysics, 1995, 16(2): 399-411
[16] KLIMECK J, KLEINRAHM R, WAGNER W. Measurements of the(p, ρ, T) relation of methane and carbon dioxide in the temperature range 240 K to 520 K at pressures up to 30 MPa using a new accurate single-sinker densimeter[J]. The Journal of Chemical Thermodynamics, 2001, 33(3): 251-267
[17] BOUCHOT C, RICHON D. An enhanced method to calibrate vibrating tube densimeters[J]. Fluid Phase Equilibria, 2001, 191(1): 189-208
[18] VELASCO I, RIVAS C, MARTINEZ-LOPEZ J F, et al. Accurate values of some thermodynamic properties for carbon dioxide, ethane, propane, and some binary mixtures[J]. The journal of physical chemistry B, 2011, 115(25): 8216-8230
[19] HOU L, SUN B, WANG Z, et al. Experimental study of particle settling in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2015, 100: 121-128
[20] ZHOU Y, NI H, SHEN Z, et al. Experimental measurement on the viscosity of supercritical carbon dioxide[J]. Measurement, 2020, 151: 1-8
[21] IZUCHI M. A high pressure rolling-ball viscometer up to 1 GPa[J]. Japanese Journal of Applied Physics, 1986, 25(7): 1091-1096
[22] HEIDARYAN E, HATAMI T, RAHIMI M, et al. Viscosity of pure carbon dioxide at supercritical region: Measurement and correlation approach[J]. The Journal of Supercritical Fluids, 2011, 56(2): 144-151
[23] 褚昆昆, 杨坤, 朱祥, 等. 基于金刚石对顶砧的液体高压黏度测量[J]. 高压物理学报, 2016, 30(5): 358-362
[24] DOCTER A, L SCH H W, WAGNER W. A new apparatus for combined measurements of the viscosity and density of fluids for temperatures from 233 To 523 K at pressures up to 30 MPa[J]. International Journal of Thermophysics, 1999, 20(2): 485-505
[25] EVERS C, L SCH H W, W W. An absolute viscometer-densimeter and measurements of the viscosity of Nitrogen, Methane, Helium, Neon, Argon, and Krypton over a wide range of density and temperature[J]. International Journal of Thermophysics, 2002, 23(6): 1411-1439
[26] 王文, 李刚, 何昭睿, 等. 气体粘度测量的低频振动法研究[J]. 西安交通大学学报, 1997, 31(5): 10-14
[27] DIPIPPO R, KESTIN J, WHITELAW J H. A high-temperature oscillating-disk viscometer[J]. Physica, 1966, 32(11-12): 2064-2080
[28] IWASAKI H, TAKAHASHI M. Studies on the transport properties of fluids at high pressure: I. The viscosity of ammonia (The co-operative researches on the fundamental studies of the liquid phase reactions at high pressures)[J]. The review of physical chenmistry of JAPAN, 1968, 38(1): 18-27
[29] NEWELL G F. Theory of oscillation type viscometers V: disk oscillating between fixed plates[J]. Zeitschrift Für Angewandte Mathematik Und Physik Zamp, 1959, 10(2): 160-174
[30] 于倩. 旋转式数字粘度计的研究与设计[D]. 大庆: 东北石油大学, 2016.
[31] 张建波, 孟现阳, 邱国盛, 等. 高压振动弦黏度计实验系统的研制[J]. 西安交通大学学报, 2012, 46(11): 30-34
[32] PENSADO A S, PÁDUA A A H, COMUÑAS M J P, et al. Viscosity and density measurements for carbon dioxide+pentaerythritol ester lubricant mixtures at low lubricant concentration[J]. The Journal of Supercritical Fluids, 2008, 44(2): 172-185
[33] 徐爱芬. 振动弦黏度/密度计的研究[D]. 杭州: 中国计量学院, 2012.
[34] SEIBT D, HERRMANN S, VOGEL E, et al. Simultaneous measurements on helium and nitrogen with a newly designed viscometerdensimeter over a wide range of temperature and pressure[J]. Jchemengdata, 2009, 54(9): 2626-2637
[35] UZUNLAR E, BEYKAL B, EHRLICH K, et al. Frequency response of microcantilevers immersed in gaseous, liquid, and supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2013, 81: 254-264
[36] ERIS G, BOZKURT A A, SUNOL A, et al. Determination of viscosity and density of fluids using frequency response of microcantilevers[J]. The Journal of Supercritical Fluids, 2015, 105: 179-185
[37] 郭天太, 陆屹立, 王雷, 等. 二维投影式光学传感器轴类零件测量研究[J]. 中国测试, 2020, 46(1): 24-28
[38] MICHELS A, SENGERS J V, GULIK P S V D. The thermal conductivity of carbon dioxide in the critical region: I. The thermal conductivity apparatus[J]. Physica, 1962, 28(12): 1201-1215
[39] MICHELS A, SENGERS J V, GULIK P S V D. The thermal conductivity of carbon dioxide in the critical region: II. Measurements and conclusions[J]. Physica, 1962, 28(12): 1216-1237
[40] 赵丽. 瞬态热线法测量导热系数及误差分析[J]. 计量与测试技术, 2011, 38(5): 13-4+7
[41] P TEK J, KLOMFAR J. Measurement of the thermal conductivity of argon and methane: a test of a transient hot-wire apparatus[J]. Fluid Phase Equilibria, 2002, 198(1): 147-163
[42] 王岩. 瞬态热线法导热系数测试研究[D]. 杭州: 中国计量大学, 2019.
[43] JOHNS A I, SCOTT A C, WATSON J T R, et al. Measurement of the thermal conductivity of gases by the transient hot-wire method[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 1988, 325(1585): 295-356
[44] SCOTT A C, JOHNS A I, WATSON J T R, et al. Thermal conductivity of carbon dioxide in the temperature range 300–348 K and pressures up to 25 MPa[J]. Journal of the Chemical Society, Faraday Transactions, 1983, 79(3): 733-740
[45] JOHNS A I, RASHID S, ROWAN L, et al. Thermal conductivity of argon, nitrogen and carbon dioxide at elevated temperatures and pressures[J]. International Journal of Thermophysics, 1988, 9(1): 3-19
[46] PÁTEK J, KLOMFAR J, ČAPLA L, et al. Thermal conductivity of carbon dioxide–methane mixtures at temperatures between 300 and 425 K and at pressures up to 12MPa[J]. International Journal of Thermophysics, 2005, 26(3): 577-592
[47] HARVEY A H, BELL I H, HUBER M L, et al. Thermophysical properties of carbon dioxide and CO2-rich mixtures[R]. United States: Applied Chemicals and Materials Division National Institute of Standards and Technology, 2016, 1-56.
[48] GUILDNER L A. The thermal conductivity of carbon dioxide in the region of the critical point[J]. Proceedings of the National Academy of Sciences of the United States of America, 1958, 44(11): 1149-1153
[49] NEINDRE B L. Contribution a l'etude experimentale de la conductivite thermique de quelques fluides a haute temperature et a haute pression[J]. International Journal of Heat & Mass Transfer, 1972, 15(1): 1-24
[50] LENEINDRE B, TUFEU R, BURY P, et al. Thermal conductivity of carbon dioxide and steam in the supercritical region[J]. Ztschrift Fr Elektrochemie Berichte Der Bunsengesellschaft Fr Physikalische Chemie, 2010, 77(4): 262-275