您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>超小GRIN光纤探头新型气体传感器模型

超小GRIN光纤探头新型气体传感器模型

1876    2020-12-22

免费

全文售价

作者:孙建美, 陈斐璐, 张越

作者单位:上海大学精密机械工程系,上海 200444


关键词:GRIN光纤探头;新型光纤气体传感器;空芯光子晶体光纤;耦合效率


摘要:

为研究集成化高性能的气体传感器,将超小GRIN光纤探头与空芯光子晶体光纤(HC-PCF)耦合,提供一种新型光纤气体传感器模型的设计方法。在解析新型光纤气体传感器模型的基础上,搭建实验测试系统,用GRIN光纤探头分别和单模光纤与HC-PCF耦合,进行接收光谱功率的比较分析。实验结果显示:在给定条件下,利用GRIN光纤探头的耦合系统可以获得67.73 nW的光谱功率,优于使用传统单模光纤接收到的53.52 nW。因此,利用GRIN光纤探头替代单模光纤与HC-PCF进行耦合并应用于光纤气体传感器中,具有更高的耦合效率和更高的输出光功率等优势,可用于新型光子晶体光纤气体传感器的研究。


A new gas sensor model based on ultra-small GRIN fiber probe
SUN Jianmei, CHEN Feilu, ZHANG Yue
Dept. of Precision Mechanical Engineering, Shanghai University, Shanghai 200444, China
Abstract: In order to study integrated high-performance gas sensor, the ultra-small GRIN fiber probe is coupled with hollow-core photonic crystal fiber (HC-PCF) to provide a new design method of the fiber optic gas sensor model. Based on the analysis of such new fiber gas sensor model, an experimental test system was built. The GRIN fiber probe was coupled with the single-model fiber (SMF) and HC-PCF respectively for comparative analysis of received spectral power. The experimental results show that under the given conditions, the coupling system using the GRIN fiber probe can obtain 67.73 nW of spectral power, which is better than 53.52 nW received using traditional single-mode fiber. Therefore, the use of GRIN fiber probes has the advantages of higher coupling efficiency and higher output optical power compared to SMF coupling with HC-PCF in fiber gas sensors, which can be further used in the research of new photonic crystal fiber gas sensors.
Keywords: GRIN fiber probe;new fiber gas sensor;hollow core photonic crystal fiber;coupling efficiency
2020, 46(12):28-32  收稿日期: 2020-05-12;收到修改稿日期: 2020-06-21
基金项目: 国家自然科学基金(61773249)
作者简介: 孙建美(1993-),女,山东潍坊市人,硕士,研究方向为智能内窥与光纤传感
参考文献
[1] BANNOV A, JASEK O, MANAKHOW A, et al. High-performance ammonia gas sensors based on plasma treated carbon nanostructures[J]. IEEE Sensors Journal, 2017, 17(7): 1964-1970
[2] SEPTIANI N, KANETI Y, YULIARTO B, et al. Hybrid nanoarchitecturing of hierarchical zinc oxide wool-ball-like nanostructures with multi-walled carbon nanotubes for achieving sensitive and selective detection of sulfur dioxide[J]. Sensors & Actuators, 2018, 261: 241-251
[3] WANG H, LUSTIG W, LI J. Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks[J]. Chemical Society Reviews, 2018, 47: 4729-4756
[4] 张志荣, 孙鹏帅, 庞涛, 等. 激光吸收光谱技术在工业生产过程及安全预警标识性气体监测中的应用[J]. 光学精密工程, 2018, 26(8): 1926-1935
[5] MUKHERJEE S, SAKORIKAR T, MUKHERJEE A, et al. Water-responsive carbon nanotubes for selective detection of toxic gases[J]. Applied Physics Letters, 2015, 106(11): 113108
[6] 常岐海. 基于激光吸收光谱的多用途气体检测系统设计[J]. 中国测试, 2013, 39(1): 93-96
[7] 叶玮琳, 周波, 余红志, 等. 中红外大气甲烷乙烷双组分气体的同步移动监测[J]. 光学精密工程, 2018, 26(8): 108-114
[8] LIU W, XU L, SHENG K, et al. APTES-functionalized thin-walled porous WO3 nanotubes for highly selective sensing of NO2 in a polluted environment[J]. Journal of Materials Chemistry A, 2018, 6(23): 10976-10989
[9] CHANDRASEKARAN S, MUTHUKUMAR S, RAJENDRAN S. Automated control system for air pollution detection in vehicles[C]//2013 4th International Conference on Intelligent Systems, Modelling and Simulation. IEEE, 2013: 49-51.
[10] RENGANATHAN B, SASTIKUMAR D, BOSE A, et al. Nanocrystalline cerium oxide coated fiber optic gas sensor[J]. Current Applied Physics, 2014, 14(3): 467-471
[11] 庾繁, 温泉, 雷宏杰, 等. 微型近红外光谱仪关键技术研究进展[J]. 激光与光电子学进展, 2018, 55(10): 24-30
[12] 乔学光, 王佳, 贾振安, 等. 光纤CH4气体传感器的实验研究[J]. 光电子·激光, 2009, 20(7): 851-854
[13] 王品一, 万福, 王建新, 等. 注入锁定腔增强拉曼光谱微量气体检测技术[J]. 光学精密工程, 2018, 26(8): 87-94
[14] 李春光, 董磊, 王一丁, 等. 基于TDLAS和ICL的紧凑中红外痕量气体探测系统[J]. 光学精密工程, 2018, 26(8): 25-31
[15] 王书涛, 刘铭华, 曾秋菊, 等. 以空芯光子带隙光纤作气室的全光纤甲烷检测[J]. 光电工程, 2015, 42(3): 1-6
[16] DHAWAN R, KHAN M, PANWAR N, et al. A low loss mechanical splice for gas sensing using hollow-core photonic crystal fibre[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(18): 3671-3673
[17] EPPLE G, JOLY N, EUSER T, et al. Effect of stray fields on Rydberg states in hollow-core PCF probed by higher-order modes[J]. Optics Letters, 2017, 42(17): 3271-3274
[18] EMAURY F, DUTIN C F, SARACENO C, et al. Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber[J]. Optics Express, 2013, 21(4): 4986-4994
[19] WANG Y, COUNY F, LIGHT P, et al. Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF[J]. Optics Letters, 2010, 35(8): 1127-1129
[20] 周佳琦, 陆维佳, 孙帮山, 等. 空芯光纤气体传感气室的优化设计[J]. 光学学报, 2012, 32(2): 281-286
[21] HOO Y, LIU S, HO H, et al. Fast response microstructured optical fiber methane sensor with multiple side-openings[J]. IEEE Photonics Technology Letters, 2010, 22(5): 296-298
[22] JIN W, HO H, CAO Y, et al. Gas detection with micro- and nano-engineered optical fibers[J]. Optical Fiber Technology, 2013, 19(6): 741-759
[23] WANG C, ZHANG Y, SUN J, et al. High-efficiency coupling method of GRIN fiber probe and hollow-core photonic crystal fiber[J]. Applied Sciences, 2019, 9(10): 2073
[24] BI S, WANG C, ZHU J, et al. Influence of no-core fiber on the focusing performance of an ultra-small gradient-index fiber probe[J]. Optics and Lasers in Engineering, 2018, 107: 46-53
[25] 王驰, 旷滨, 孙建美, 等. 超小自聚焦光纤探头的研究进展(英文)[J]. 中国光学, 2018, 11(6): 875-888