登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>染色质转座酶可及性测序研究与数据分析

染色质转座酶可及性测序研究与数据分析

251    2020-10-27

¥0.50

全文售价

作者:廖彬1, 杨佳怡2, 陈桂芳2, 高运华2, 王晶2, 任歌2

作者单位:1. 北京化工大学,北京 100029;
2. 中国计量科学研究院,北京 100029


关键词:染色质可及性;测序;ATAC-seq;数据分析


摘要:

在真核生物中,染色质作为遗传物质DNA的载体,直接参与基因的表达调控。染色质的可及性是指染色质中的DNA能与转录因子等蛋白复合物结合的区域,对染色质可及性的测定可为获取开放区域的信息、核小体定位信息以及转录因子结合信息提供基础依据。随着高通量测序技术的进步以及测序成本的降低,研究者已开发多种研究染色质可及性的测序方法,该文介绍4种常见的染色质可及性测序方法,对其中的染色质转座酶可及性测序(assay for transposase-accessible chromatin with high-throughput sequencing,ATAC-seq)的原理和数据分析方法进行重点描述,讨论ATAC-seq的应用与发展趋势,为染色质可及性以及基因表达调控的研究提供参考。


Research progress and data analysis of assay for transposase-accessible chromatin withhigh-throughput sequencing
LIAO Bin1, YANG Jiayi2, CHEN Guifang2, GAO Yunhua2, WANG Jing2, REN Ge2
1. Beijing University of Chemical Technology, Beijing 100029, China;
2. National Institute of Metrology, China, Beijing 100029, China
Abstract: Chromatin, as the carrier of genetic material DNA, is directly involved in the regulation of gene expression in eukaryotes. The accessibility of chromatin is the region where DNA in chromatin can bind to protein complexes such as transcription factors. The determination of chromatin accessibility provides a basic basis for obtaining open region information, nucleosome positioning information and transcription factor binding information. With the progress of high-throughput sequencing technology and the reduction of sequencing cost, researchers have developed a variety of sequencing methods to study chromatin accessibility. This paper presents four common methods of chromatin accessibility sequencing, focuses on the principle and data analysis methods of ATAC-seq, discussing the application and development trend of ATAC-seq. It provides a reference for the study of chromatin accessibility and gene expression regulation.
Keywords: chromatin accessibility;sequencing;ATAC-seq;data analysis
2020, 46(10):4-10  收稿日期: 2020-07-20;收到修改稿日期: 2020-08-29
基金项目: 国家自然科学基金(31900433,41907272)
作者简介: 廖彬(1998-),男,广西南宁市人,硕士研究生,专业方向为计算化学、生物学
参考文献
[1] SONG L, CRAWFORD G E. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells[J]. Cold Spring Harbor Protocols, 2010, 2010(2): pdb prot5384
[2] SCHONES D E, CUI K, CUDDAPAH S, et al. Dynamic regulation of nucleosome positioning in the human genome[J]. Cell, 2008, 132(5): 887-898
[3] BUENROSTRO J D, GIRESI P G, ZABA L C, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position[J]. Nature Methods, 2013, 10(12): 1213-1218
[4] GIRESI P G, KIM J, MCDANIELL R M, et al. FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin [J]. Genome Research, 2007, 17(6): 877-885.
[5] OH K S, HA J, BAEK S, et al. XL-DNase-seq: improved footprinting of dynamic transcription factors[J]. Epigenetics & Chromatin, 2019, 12(1): 1-12
[6] CHEREJI R V, OCAMPO J, CLARK D J. MNase-sensitive complexes in yeast: nucleosomes and non-histone barriers[J]. Molecular Cell, 2017, 65(3): 565-577
[7] HE H H, MEYER A C, HU S S, et al. Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification[J]. Nature Methods, 2014, 11(1): 73-78
[8] BUENROSTRO J D, WU B, CHANG H Y, et al. ATAC-seq: a method for assaying chromatin accessibility genome-wide[J]. Current Protocols in Molecular Biology, 2015, 109(21/29): 1-9
[9] YAN F, POWELL D R, CURTIS D J, et al. From reads to insight: a hitchhiker's guide to ATAC-seq data analysis[J]. Genome Biology, 2020, 21(1): 1-16
[10] SUN Y, MIAO N, SUN T. Detect accessible chromatin using ATAC-sequencing, from principle to applications[J]. Hereditas, 2019, 156(1): 29-38
[11] DAVIES D R. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate[J]. Science, 2000, 289(5476): 77-85
[12] DE-SENA B G, ANDREW D S. Falco: high-speed FastQC emulation for quality control of sequencing data[J]. F1000Research, 2019, 8: 1874
[13] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120
[14] LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2[J]. Nature Methods, 2012, 9(4): 357-359
[15] KISSMANN R. PICARD: A novel code for the galactic cosmic ray propagation problem[J]. Astroparticle Physics, 2014, 55(2): 37-50
[16] ZUO Z, JIN Y, ZHANG W, et al. ATAC-pipe: general analysis of genome-wide chromatin accessibility[J]. Briefings in Bioinform, 2019, 20(5): 1934-1943
[17] CHANG P, GOHAIN M, YEN M R, et al. Computational methods for assessing chromatin hierarchy[J]. Computational and Structural Biotechnology Journal, 2018, 16: 43-53
[18] ADEY A, MORRISON H G, ASAN, et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition[J]. Genome Biology, 2010, 11(12): 119-136
[19] TARBELL E D, LIU T. HMMRATAC: a hidden markov modeler for ATAC-seq[J]. Nucleic Acids Research, 2019, 47(16): e91
[20] GOODNIGHT A V, KREMSKY I, KHAMPANG S, et al. Chromatin accessibility and transcription dynamics during in vitro astrocyte differentiation of Huntington's Disease Monkey pluripotent stem cells[J]. Epigenetics & Chromatin, 2019, 12(1): 67
[21] LOVE M I, HUBER W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J]. Genome Biology, 2014, 15(12): 550.
[22] LUN A T, SMYTH G K. Csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows[J]. Nucleic Acids Research, 2016, 44(5): e45
[23] YU G, WANG L G, HE Q Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization[J]. Bioinformatics, 2015, 31(14): 2382-2383
[24] KONDILI M, FUST A, PREUSSNER J, et al. UROPA: a tool for universal robust peak annotation[J]. Scientific Reports, 2017, 7(1): 2593
[25] KAHARA J, LAHDESMAKI H. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data[J]. Bioinformatics, 2015, 31(17): 2852-2859
[26] VONHANDORF A, SANCHEZ-MARTIN F J, BIESIADA J, et al. Chromium disrupts chromatin organization and CTCF access to its cognate sites in promoters of differentially expressed genes[J]. Epigenetics, 2018, 13(4): 363-375
[27] LI Z, SCHULZ M H, LOOK T, et al. Identification of transcription factor binding sites using ATAC-seq[J]. Genome Biology, 2019, 20(1): 45
[28] JANKOWSKI A, TIURYN J, PRABHAKAR S. Romulus: robust multi-state identification of transcription factor binding sites from DNase-seq data[J]. Bioinformatics, 2016, 32(16): 2419-2426
[29] VAINSHTEIN Y, RIPPE K, TEIF V B. NucTools: analysis of chromatin feature occupancy profiles from high-throughput sequencing data[J]. BMC Genomics, 2017, 18(1): 158
[30] SCHEP A N, BUENROSTRO J D, DENNY S K, et al. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions[J]. Genome Research, 2015, 25(11): 1757-1770
[31] PICELLI S, BJORKLUND A K, REINIUS B, et al. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects[J]. Genome Research, 2014, 24(12): 2033-2040
[32] MAHER K A, BAJIC M, KAJALA K, et al. Profiling of accessible chromatin regions across multiple plant species and cell types reveals common gene regulatory principles and new control modules[J]. Plant Cell, 2018, 30(1): 15-36
[33] MILANI P, ESCALANTE-CHONG R, SHELLEY B C, et al. Cell freezing protocol suitable for ATAC-Seq on motor neurons derived from human induced pluripotent stem cells[J]. Science Report, 2016, 6: 25474
[34] SOS B C, FUNG H L, GAO D R, et al. Characterization of chromatin accessibility with a transposome hypersensitive sites sequencing (THS-seq) assay[J]. Genome Biology, 2016, 17: 20
[35] BAJIC M, MAHER K A, DEAL R B. Identification of open chromatin regions in plant genomes using ATAC-seq[J]. Methods in Molecular Biology, 2018, 1675: 183-201
[36] RICKNER H D, NIU S Y, CHENG C S. ATAC-seq assay with low mitochondrial DNA contamination from primary human CD4+ T lymphocytes[J]. Journal of Visualized Experiments, 2019(145): e59120
[37] BRAVO GONZALEZ-BLAS C, MINNOYE L, PAPASOKRATI D, et al. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data[J]. Nature Methods, 2019, 16(5): 397-400
[38] GABITTO M I, RASMUSSEN A, WAPINSKI O, et al. Characterizing chromatin landscape from aggregate and single-cell genomic assays using flexible duration modeling[J]. Nature Communications, 2020, 11(1): 747
[39] CHEN X, MIRAGAIA R J, NATARAJAN K N, et al. A rapid and robust method for single cell chromatin accessibility profiling[J]. Nature communications, 2018, 9(1): 5345
[40] RAI V, QUANG D X, ERDOS M R, et al. Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures[J]. Molecular Metabolism, 2020, 32: 109-121
[41] LIU L, LIU C, QUINTERO A, et al. Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity[J]. Nature communications, 2019, 10(1): 470
[42] GRANJA J M, KLEMM S, MCGINNIS L M, et al. Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia[J]. Nature biotechnology, 2019, 37(12): 1458-1465
[43] WANG Y, ZHANG X, SONG Q, et al. Characterization of the chromatin accessibility in an Alzheimer's disease (AD) mouse model[J]. Alzheimer's Research Therapy, 2020, 12(1): 29
[44] AMANDA M, ACKERFMANN, WANG Z, et al. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes[J]. Molecular Metabolism, 2016, 5(3): 233-244