登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>测量炸药爆炸威力的实验方法研究

测量炸药爆炸威力的实验方法研究

427    2020-09-17

¥0.50

全文售价

作者:李根, 卢芳云, 李翔宇

作者单位:国防科技大学文理学院,湖南 长沙 410000


关键词:爆炸力学;威力评估;量纲分析;数值模拟


摘要:

为评估炸药的爆炸威力,设计一种炸药-套筒-滑块实验装置,通过测量滑块在炸药爆轰产物作用下的位移-时间曲线来计算炸药的爆炸威力。根据量纲理论分析炸药种类和能量、套筒尺寸、滑块质量对滑块位移的影响,并通过AUTODYN数值模拟进行验证,最终得到滑块位移随时间的变化规律。结果表明,无量纲化的滑块位移随时间变化具有确定关系,根据实验具体参数可以反推出炸药爆炸能量,方法具有普适性。该实验装置可以作为测量炸药爆炸威力的一种有效手段。


Research on experimental method for assessing explosive power
LI Gen, LU Fangyun, LI Xiangyu
College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410000, China
Abstract: In order to evaluate explosion power of an explosive, an explosive-sleeve-slider experimental device is designed to calculate the explosive equivalent by measuring the displacement-time history of the slider driven by the detonation products. According to dimension theory, the influence factors on the displacement of the slider, consisting of the specie and energy of the explosive, the dimension of the sleeve and the mass of the slider, are analyzed and validated by AUTODYN. Finally, the displacement-time relationship of the slider is obtained. The result shows that the dimensionless displacement of the slider has a definite relation with the dimensionless time and the explosive power can be derived based on the experimental parameters, and the method is universal. The experimental device can be used as an effective means to assess explosive power.
Keywords: explosion mechanics;power assessment;dimensional analysis;numerical simulation
2020, 46(8):40-46  收稿日期: 2020-05-31;收到修改稿日期: 2020-06-23
基金项目: 国家自然科学基金资助(11872376)
作者简介: 李根(1990-),男,辽宁葫芦岛市人,博士研究生,主要从事毁伤效应评估研究
参考文献
[1] WHARTON R K, FORMBY S A, MERRIFIELD R. Air blast TNT equivalence for a range of commercial blasting explosives[J]. Journal of Hazardous Materials, 2000, 79(1): 31-39
[2] PACHMAN J, MATYÁŠ R, KÜNZEl M. Study of TATP: blast characteristics and TNT equivalency of small charges[J]. Shock Waves, 2014, 24(4): 439-445
[3] 刘玲, 袁俊明, 刘玉存, 等. 自制炸药的冲击波超压测试及TNT当量估算[J]. 火炸药学报, 2015, 38(2): 50-53
[4] LIN M J, MA H H, SHEN Z W, et al. Effect of aluminum fiber content on the underwater explosion performance of RDX-based explosives[J]. Propellants Explosives Pyrotechnics, 2014, 39(2): 230-235
[5] CAO W, HE Z, CHEN W. Experimental study and numerical simulation of the afterburning of TNT by underwater explosion method[J]. Shock Waves, 2014, 24(6): 619-624
[6] 万晓智, 马宏昊, 沈兆武, 等. 铝纤维炸药土中扩腔现场实验与数值模拟[J]. 爆炸与冲击, 2016, 36(2): 236-241
[7] 徐小辉, 邱艳宇, 王明洋, 等. 大当量浅埋地下爆炸抛掷成坑效应的缩比模拟实验装置[J]. 爆炸与冲击, 2018, 038(6): 1333-1343
[8] 胡宏伟, 冯海云, 陈朗, 等. 非理想炸药在混凝土介质中的爆炸做功特性[J]. 爆炸与冲击, 2018, 38(1): 197-203
[9] 胡宏伟, 肖川, 李丽, 等. 有限空间炸药装药内爆炸威力的评估方法综述[J]. 火炸药学报, 2013(4): 1-6
[10] 陈昊, 陶钢, 蒲元. 冲击波的超压测试与威力计算[J]. 火工品, 2010(1): 21-24
[11] 姬建荣, 苏健军, 孔德仁, 等. 爆炸冲击波参数薄膜测试法研究[J]. 中国测试, 2016, 42(10): 21-24, 62
[12] 张玉磊, 苏健军, 姬建荣, 等. 超压测试方法对炸药TNT当量计算结果的影响[J]. 火炸药学报, 2014, 37(3): 16-19
[13] 饶国宁, 周莉, 宋述忠, 等. 云爆药剂爆炸超压测试及威力评价[J]. 爆炸与冲击, 2018, 38(3): 579-585
[14] 顾泽凌, 孟令军, 任楷飞, 等. 爆炸桶中冲击波超压测试方法研究[J]. 中国测试, 2018, 44(2): 31-35
[15] JACOBS S J. On the equation of state for detonation products at high density[J]. Symposium on Combustion, 1969, 12(1): 501-511