您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>正弦压力信号数据处理方法研究

正弦压力信号数据处理方法研究

1932    2020-09-17

免费

全文售价

作者:徐子翼1, 张忠立2, 王灿2, 倪玉山1

作者单位:1. 复旦大学航空航天系,上海 200433;
2. 上海市计量测试技术研究院,上海 201203


关键词:计量学;正弦压力;误差分析;频率估计


摘要:

针对现行规程中广泛应用的4种正弦压力信号处理方法,为比较三参数法和四参数法的优劣,使用Matlab模拟幅值缩放、相位时延和谐波失真3种情况下的理想信号,并计算其幅值、直流分量、相位和频率4个正弦参数。结果表明:在已知信号频率的情况下,三参数法优于四参数法,且不受谐波干扰。进一步绘制三维图像,分析频率估计误差对三参数法幅值灵敏度和相位差的影响,最终给出结论:三参数法的最大误差在频率估计误差较小时可用线性误差控制,频率估计百分比误差为2%时,幅值灵敏度和相位差的最大百分比误差约为-1.9%,可用于保守计算频率估计误差所带来的影响。


Study on processing methods of sinusoidal pressure signal data
XU Ziyi1, ZHANG Zhongli2, WANG Can2, NI Yushan1
1. Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China;
2. Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
Abstract: Aiming at four widely used processing methods of sinusoidal pressure signal in current regulations, three kinds of ideal conditions, which include amplitude scaling, phase delay and harmonic distortion, are designed in Matlab to simulate and calculate its four sinusoidal parameters, which include amplitude, direct component, phrase and frequency, to compare advantages and disadvantages of three-parameter method and four-parameter method. The result shows that three-parameter method is superior to four-parameter method and is not interfered by harmonic wave in the case of known signal frequency. Meanwhile, the effect of frequency estimation error to three-parameter method’s amplitude sensitivity and phase difference is analyzed by plotting its three-dimensional charts. Finally, it comes a conclusion that the maximum error of three-dimensional method can be controlled by linear error when frequency estimation error is small. The maximum error percent of amplitude sensitivity and phase difference is approximately -1.9% when the error percent of frequency estimation is 2%, which can be used to conservatively calculate the effect of frequency estimation error.
Keywords: metrology;sinusoidal pressure;error analysis;frequency estimation
2020, 46(8):19-25,46  收稿日期: 2020-01-19;收到修改稿日期: 2020-03-03
基金项目: 上海市科委技术标准专项(18DZ2203800)
作者简介: 徐子翼(1996-),男,上海市人,硕士研究生,专业方向为固体力学
参考文献
[1] 张训文, 方继明, 焦子路. 中等振幅比液体正弦压力校准系统[C]//中国仪器仪表学会. 第六届全国信息获取与处理学术会议论文集(2), 2008.
[2] 陶继增, 李程, 李欣. 一种新型正弦压力发生器[J]. 计测技术, 2008(3): 24-25
[3] 张大有, 温世仁, 武东健, 等. 一种新的动态压力校准装置[J]. 宇航计测技术, 2011, 31(6): 15-20
[4] 邰寒松, 张大有. 正弦压力信号幅值测量无差算法研究[J]. 宇航计测技术, 2019, 39(4): 93-98
[5] 梁志国. 一种四参数正弦参量估计算法的改进及实验分析[J]. 计量学报, 2017, 38(4): 492-498
[6] 高阵雨, 胡金春, 朱煜, 等. 基于迭代学习的正弦信号幅相特性测量[J]. 控制工程, 2019, 26(7): 1304-1307
[7] 曾玲, 陈伟, 陶金. 低信噪比正弦信号相位差测量算法对比研究[J]. 电子测量技术, 2017, 40(1): 71-75, 89
[8] 朱磊, 沈继红. 正弦信号频率估计的改进高阶自相关算法[J]. 哈尔滨工程大学学报, 2016, 37(4): 579-584
[9] 张浩, 张志杰, 翟宇鹏, 等. 正弦压力校准平台的系统不确定度分析[J]. 电子测量技术, 2018, 41(24): 103-106
[10] 刘玥, 党艳虎. 浅谈正弦动态压力传感器不确定度分析与评定[J]. 工业计量, 2017, 27(S1): 70-73
[11] 袁俊先, 蔡菁. 基于正弦压力校准装置的压力传感器不确定度评定[J]. 计测技术, 2013, 33(S1): 190-192
[12] 动态压力传感器: JJG 624—2005[S]. 北京: 中国计量出版社, 2005.