登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>橡胶/铝合金粘接构件脱粘缺陷非线性超声检测技术研究

橡胶/铝合金粘接构件脱粘缺陷非线性超声检测技术研究

395    2020-08-19

¥0.50

全文售价

作者:凡丽梅1, 董方旭1, 安志武2, 王从科1, 赵付宝1, 汤振鹤1

作者单位:1. 中国兵器工业集团第五三研究所,山东 济南 250031;
2. 中国科学院声学研究所,北京 100190


关键词:粘接构件;非线性超声检测;基波;二次谐波;非线性系数


摘要:

为提高橡胶/铝合金粘接构件粘接界面缺陷检测结果的可靠性,解决缺陷定量化表征问题,该文采用非线性超声检测技术对含模拟脱粘缺陷试样进行研究,建立非线性弹簧模型,通过采集模拟脱粘缺陷试样上缺陷处的基波信号和二次谐波信号,获得缺陷非线性系数β值,建立缺陷面积与非线性系数β值关系拟合曲线。对比自然试样中缺陷的非线性超声检测和超声C扫描检测结果,验证非线性超声检测结果可靠,因此非线性超声检测技术是评价橡胶/铝合金粘接构件粘接界面粘接质量的一种可靠方法。


Study on nonlinear ultrasonic detection technology of debonding defects for rubber/aluminum alloy bond component
FAN Limei1, DONG Fangxu1, AN Zhiwu2, WANG Congke1, ZHAO Fubao1, TANG Zhenhe1
1. CNGC Institute 53, Jinan 250031, China;
2. Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
Abstract: In order to improve the reliability of defect detection result for rubber/aluminum alloy bond component and solve the quantitative characterization problem of defects. Nonlinear ultrasonic detection technology is used to inspect simulation debonding defects samples, the nonlinear spring model has been theoretically established, the nonlinear coefficient β was acquired through collecting fundamental signals and second harmonic signals of simulation debonding defects sample, the fitting curve between defect area and nonlinearity coefficient β was established. The result of nonlinear ultrasonic detection and ultrasonic C-scan test was compared, which verified the reliability of nonlinear ultrasonic detection result, Therefore nonlinear ultrasonic detection technology is a reliable method to evaluate the bonding quality of rubber/aluminum alloy bond component.
Keywords: bond component;nonlinear ultrasonic detection;fundamental echo;second harmonic;nonlinear coefficient
2020, 46(8):15-21,43  收稿日期: 2019-09-02;收到修改稿日期: 2019-10-21
基金项目:
作者简介: 凡丽梅(1983-),女,山东济南市人,副研究员,硕士,主要从事复合材料方面超声检测研究
参考文献
[1] 江念, 王召巴, 金永, 等. 复合结构界面粘接质量的非线性超声检测[J]. 兵工学报, 2014, 35(3): 398-402
[2] 李明轩, 王小民, 安志武. 粘接界面特性的超声检测与评价[J]. 应用声学, 2013, 32(3): 190-198
[3] 赵娜, 王召巴, 陈友兴, 等. 塑料-钢粘接强度的非线性超声无损检测[J]. 山西电子技术, 2014(5): 19-20,23
[4] 施克仁. 无损检测新技术[M]. 北京: 清华大学出版社. 2007, 164-165.
[5] 陆铭慧, 徐肖霞. 非线性超声检测方法及应用[J]. 无损检测, 2012, 34(7): 61-66
[6] 敦怡, 师小红, 徐章隧. 基于二次谐波技术的固体火箭发动机界面粘接质量的超声无损评价[J]. 固体火箭技术, 2008, 31(2): 198-200
[7] 郭怡, 师小红, 徐章逐. 非线性超声在金属基复合材料结构界面粘接强度评价中的应用[J]. 中国机械工程, 2008, 19(19): 2351-2354
[8] DONSKOY D, SUTIN A, EKIMOV A. Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing[J]. NDT& E International, 2001, 34(4): 231-238
[9] JHANG K Y. Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review[J]. International Journal of Precision Engineering and Manufacturing, 2009, 10: 123-135
[10] 钱祖文. 非线性声学[M]. 北京: 科学出版社, 1992.
[11] ZHOU S Q, SHUI Y A. Nonlinear reflection of bulk acoustic waves at an interface[J]. Journal of Applied Physics, 1992, 72(11): 5070-5080
[12] BAIK J M, THOMPSON R B. Ultrasonic scattering from imperfect interfaces: a quasi-static model[J]. Journal of Nondestructive Evaluation, 1984, 4(3-4): 177-196
[13] ROKHLIN S I, WANG Y J. Analysis of boundary conditions for elastic wave interaction with an interface between two solids[J]. J. Acoust. Soc. Am., 1991, 89(2): 503-515
[14] DELSANTO P P, GLIOZZI A S, HIRSEKORN M, et al. A 2D spring model foe the simulation of ultrasonic wave propagation in nonlinear hysteretic media[J]. Ultasonics, 2006, 44(3): 279-286
[15] PECORARIC, CLAUDIO. Adhesion and nonlinear scattering by rough surfaces in contact: beyond the phenomenology of the Preisach-Mayergoyz framework[J]. Acoustical Society of America Journal, 2004, 116(4): 1938-1947
[16] ACHENBACH J D, PARIKH O K, SOTIROPOULOS D A. Nonlinear effects in the reflection from adhesive bonds[J]. Rev. Prog. QNDE., 1989, 8B: 1401-1407
[17] SOLODOV I Y, KROHN N, BUSSE G. CAN: an example of nonclassical acoustic nonlinearity in solids[J]. Ultrasonics, 2002, 40(1): 621-625
[18] ROKHLIN S I, MAROM D. Study of adhesive bonds using low-frequency obliquely incident ultrasonic waves[J]. J. Acoust. Soc. Am., 1986, 80(2): 585-590
[19] AN Z W, WANG X M, DENG M X, et al. A nonlinear spring model for an interface between two solids[J]. Wave Motion, 2013, 50(2): 295-309
[20] AN Z W, WANG X M, DENG M X, et al. Theoretical development of nonlinear spring models for the second harmonics on an interface between two solids[J]. Chinese Physics Letters, 2009, 26(11): 114302
[21] 安志武, 王小明, 毛捷等. 粘接界面的非线性弹簧模型及实验验证[J]. 声学学报, 2010, 35(5): 481-487