登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>自适应神经模糊网络高压输电线路操作过电压风险点定位算法

自适应神经模糊网络高压输电线路操作过电压风险点定位算法

177    2020-07-22

¥0.50

全文售价

作者:杨虎臣1, 王晓东1, 安慧1, 李毅靖2, 郑钟2, 林永春2

作者单位:1. 国网长治供电公司,山西 长治 046000;
2. 国网信通亿力科技有限责任公司,福建 福州 350003


关键词:操作过电压;自适应神经模糊网络;输电线路;绝缘风险;点波开关


摘要:

为保证特高压输电线路的安全可靠运行,需要限制操作过电压(switching overvoltages, SOV)并对其产生的应力进行适当的绝缘配合。点波开关(point on wave switching, PWS)是在无避雷器的情况下限制SOV的有效策略,但还未应用于实际系统。为此,该文提出一种基于线路陷阱电荷的PWS策略确定沿输电线路SOV的临界失效风险点的方法。根据输电线路结构数据和断路器参数,建立一种基于PWS的自适应神经模糊推理系统,用于预测开关浪涌闪络率和临界故障点。为减少训练误差,在EMTP/ATP环境下进行两阶段数据分类的智能化训练,所提模型可用于实际系统规划绝缘配置。仿真分析说明所提算法的有效性,对比验证表明在绝缘设计研究中应该考虑海拔高度。


Location algorithm of switching overvoltages risk points for high voltage transmission lines based on adaptive neural fuzzy network
YANG Huchen1, WANG Xiaodong1, AN Hui1, LI Yijing2, ZHENG Zhong2, LIN Yongchun2
1. State Grid Changzhi Power Supply Company, Changzhi 046000, China;
2. State Grid Info-Telecom Great Power Science and Technology Co., Ltd., Fuzhou 350003, China
Abstract: In order to ensure the safe and reliable operation of UHV transmission lines, it is necessary to limit switching overvoltages (SOV) and make appropriate insulation coordination for the stress generated by them. Point on wave switching (PWS) is an effective strategy to limit SOV without arrester, but it has not been applied to the actual system. Therefore, this paper proposes a method to determine the critical failure risk point of SOV along the transmission line based on the PWS strategy of line trap charge. According to the transmission line structure data and circuit breaker parameters, an adaptive neural fuzzy inference system based on PWS is established to predict the switch surge flashover rate and critical fault point. In order to reduce the training error, the intelligent training of two-stage data classification is carried out under the environment of EMTP / ATP. The proposed model can be used in the actual system planning insulation configuration. The simulation analysis shows the effectiveness of the proposed algorithm, and the comparison shows that the altitude should be considered in the insulation design research.
Keywords: switching overvoltages;adaptive neural fuzzy network;transmission line;insulation risk;point on wave switching
2020, 46(7):24-32,45  收稿日期: 2020-03-13;收到修改稿日期: 2020-04-29
基金项目: 国网山西省电力公司长治供电公司科技项目(SGSXC200XTJ)
作者简介: 杨虎臣(1967-),男,山西闻喜县人,高级工程师,主要研究方向为输电线路绝缘设计与大数据分析
参考文献
[1] 韩彬, 王平, 张媛媛, 等. 特高压半波长交流输电系统过电压特性及对策[J]. 高电压技术, 2018, 12(1): 14-21
[2] THUKARAM D, KHINCHA H P, KHANDELWAL S. Estimation of switching transient peak overvoltages during transmission line energization using artificial neural network[J]. Electric Power Systems Research, 2006, 76(4): 259-269
[3] 高伟, 杨耿杰, 郭谋发, 等. 基于DTCWT-DBN的配电网内部过电压类型识别[J]. 电力系统保护与控制, 2019, 47(9): 86-95
[4] TAHER S A, SADEGHKHANI I. Estimation of magnitude and time duration of temporary overvoltages using ANN in transmission lines during power system restoration[J]. Simulation Model Practice and Theory, 2010, 18(6): 787-805
[5] SEYEDI H, TANHAEIDILMAGHANI S. New controlled switching approach for limitation of transmission line switching overvoltages[J]. IET Generation Transmission & Distribution, 2013, 7(3): 218-225
[6] ATEFI M A, SANAYE-PASAND M. Improving controlled closing to reduce transients in HV transmission lines and circuit breakers[J]. IEEE Transactions on Power Delivery, 2013, 2(7): 733-741
[7] SANAYE-PASAND M, DADASHZADEH M R, KHODAYAR M. Limitation of transmission line switching overvoltages using switchsync relays[C]//Proc. Int. Conf. Power System Transients, Canada, 2005.
[8] 洪俊宇. 输电线路自适应分相重合闸方法研究[D]. 长沙:湖南大学, 2018.
[9] 沈军, 舒治淮, 陈军, 等. 自适应重合闸在电力系统中的应用实践[J]. 电力系统自动化, 2018(6): 152-156
[10] DANTAS K M C, NEVES W L A, FERNANDES D. An approach for controlled reclosing of shunt-compensated transmission lines[J]. IEEE Transactions on Power Delivery, 2014, 29(3): 1203-1211
[11] SHARIATINASAB R, VAHIDI B, HOSSEINIAN S H, et al. Probabilistic evaluation of the optimal location of surge arresters on EHV and UHV networks due to switching and lightning surges[J]. IEEE Transactions on Power Delivery, 2009, 24(4): 1903-1911
[12] 徐胜. 基于EMTP仿真数据的500 kV变电站过电压辨识研究[D]. 武汉:华中科技大学, 2018.
[13] 欧阳本红, 赵健康, 周福升, 等. 基于等温表面电位衰减法的直流电缆用低密度聚乙烯和交联聚乙烯陷阱电荷分布特性[J]. 高电压技术, 2015, 15(8): 222-229
[14] HOSSEINIAN S, ABEDI M, VAHIDI B. Digital computer studies of random switching of Iranian standard 400kV lines[C]//Proc. of the 3rd Int. Conf. on Properties and Applications of Dielectric Materials, Tokyo, Japan, 1991.
[15] CIGRE WORKING GROUP. Switching overvoltages in EHV and UHV systems with special reference to closing and reclosing transmission lines[J]. Electra, 1973(30): 70-122
[16] 刘玉婷, 王鹏, 王芬, 等. 500 kV输电线路避雷器配置方案计算[J]. 能源研究与管理, 2019(3): 19-23
[17] 王万纯. 基于ATP-EMTP的电缆故障测距技术研究[D].南京:南京理工大学, 2013.
[18] ANANE Z, BAYADI A. Studies on the influence of corona on overvoltage surges by simulation using the ATP/EMTP[C]// Int.Conf. on Microelectronics (ICM), Algiers, Algeria, 2012.
[19] CERVANTES M, KOCAR I, MONTENEGRO A, et al. Simulation of switching overvoltages and validation with field tests[J]. IEEE Transactions on Power Delivery, 2018, 33(6): 2884-2893
[20] ROCHA R, TAVORA J L. EMTP model for controlled switching simulation by means of TACS routine[C]//Int. Conf. Power Systems Transients (IPST), Seattle, USA, 1997.
[21] 丁登伟, 韩先才, 王宁华, 等. 特高压GIL绝缘击穿时暂态电压时频特征分析[J]. 电网技术, 2020, 1(1): 1-8
[22] SHARIATINASAB R, VAHIDI B, HOSSEINIAN S H. Statistical evaluation of lightning-related failures for the optimal location of surge arresters on the power networks[J]. IET Generation Transmission & Distribution, 2009, 3(2): 129-144
[23] 魏劲如, 基于神经网络和模糊推理的VGI数据质量评价研究[D]. 西安:长安大学, 2019.
[24] MORA J J, CARRILLO G, PEREZ L. Fault location in power distribution systems using ANFIS nets and current patterns[C]//IEEE PES Transmission and Distribution Conf Exposition Latin America, Caracas, Venezuela, 2006.