登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>软体心脏固定器柔性支撑臂变刚度性能分析与测试

软体心脏固定器柔性支撑臂变刚度性能分析与测试

195    2020-06-22

¥0.50

全文售价

作者:李祥伟, 何彦霖, 孙广开, 孟凡勇, 宋言明

作者单位:北京信息科技大学 光电测试技术与仪器教育部重点实验室, 北京 100016


关键词:软体心脏固定器;颗粒堵塞原理;悬臂梁模型;变刚度性能测试


摘要:

为解决目前非体外循环冠状动脉旁路移植术中所用心脏固定器刚度无法调节、易引起心表组织出血造成副损伤的问题,设计一种基于颗粒堵塞原理的变刚度软体心脏固定器,并探究其柔性支撑臂变刚度性能。将柔性支撑臂简化为悬臂梁模型,利用悬臂梁模型进行在不同填充颗粒、不同悬臂梁长度、不同负压下的力-位移测量实验。实验测得填充颗粒的直径越小、支撑臂的长度越短、负压越大,支撑臂所承受的力越大,支撑臂的刚度与负压大小成正比,支撑臂在0~10 mm的位移内承受的最大力能够达到2.4 N。研究结果表明:填充颗粒的大小、支撑臂长度、负压大小对柔性支撑臂变刚度性能都有一定的影响。


Analysis and test of variable stiffness performance of flexible support arm of soft cardiac fixators
LI Xiangwei, HE Yanlin, SUN Guangkai, MENG Fanyong, SONG Yanming
Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100016, China
Abstract: In order to solve the problem that the rigidity of the cardiac fixator used in off-pump coronary artery bypass grafting can not be adjusted, and it is easy to cause side damage of the cardiac surface tissue, a variable stiffness soft cardiac fixator based on the principle of particle blockage is designed, variable stiffness performance of flexible support arms has is explored. The flexible support arm was simplified as a cantilever beam model. The cantilever beam model was used to perform force-displacement measurement experiments under different filling particles, different cantilever beam lengths, and different negative pressures. The smaller the diameter of the filler particles, the shorter the length of the support arm, and the larger the negative pressure, the greater the force the support arm bears. The stiffness of the support arm is proportional to the negative pressure. The displacement of the support arm between 0-10 mm, the maximum internal force can reach 2.4 N. The results show that the size of the filler particles, the length of the support arm, and the negative pressure have a certain effect on the variable stiffness performance of the flexible support arm.
Keywords: soft cardiac fixactors;particle blocking principle;cantilever beam model;variable stiffness performance test
2020, 46(6):140-146  收稿日期: 2019-10-23;收到修改稿日期: 2020-01-23
基金项目: 国家自然科学基金(61903041)
作者简介: 李祥伟(1994-),男,重庆市人,硕士研究生,专业方向为软体机器人
参考文献
[1] 郑浩勇, 袁开波. 心脏固定器基座注射模设计[J]. 模具制造, 2019, 19(7): 33-37
[2] 陈佩军, 于广东, 吉林, 等. 非体外循环冠状动脉搭桥术围手术期的麻醉管理[J]. 江苏医药, 2012, 38(2): 228-229
[3] WANG J, YU W, GAO M, et al. Preoperative prophylactic intraaortic balloon pump reduces the incidence of postoperative acute kidney injury and short-term death of high-risk patients undergoing coronary artery bypass grafting: a meta-analysis of 17 studies[J]. Annals of Thoracic Surgery, 2016, 101(5): 2007-2019
[4] DAI L, GAO M, GU C, et al. Perivenous application of cyanoacrylate tissue sealants reduces intmal and medial thickning of the vein graft and inflammatory responses in a rabbit model of carotid artery bypass grafting[J]. Eur J Cardiothorac Surg, 2016, 49(2): 675-681
[5] 王华, 康荣杰, 王兴坚, 等. 软体弯曲驱动器设计与建模[J]. 北京航空航天大学学报, 2017, 43(5): 1053-1060
[6] MOSADEGH B, POLYGERINOS P, KEPLINGER C, et al. Soft robotics: pneumatic networks for soft robotics that actuate rapidly[J]. Advanced Functional Materials, 2014, 24(15): 2109-2109
[7] POLYGERINOS P, WANG Z, OVERVELDE J T B, et al. Modeling of soft fiber-reinforced bending actuators[J]. IEEE Transactions on Robotics, 2015, 31(3): 778-789
[8] RANZANI T, GERBONI G,CIANCHETTI M, et al. A bioinspired soft manipulator for minimally invasive surgery[J]. Bioinspiration & Biomimetics, 2015, 10(3): 35-38
[9] PAYNE C J, WAMALA I, SALINAS D B, et al. Soft robotic ventricular assist device with septal bracing for therapy of heart failure[J]. Science Robotics, 2017(2): 1-11
[10] DEGANI A, CHOSET H, ZUBIATE B, et al. Highly articulated robotic probe for minimally invasive surgery[C]// 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2008: 4167-4172.
[11] SIMAAN N. Snake-like units using flexible backbones and actuation redundancy for enhanced miniaturization[C]// Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. IEEE, 2005: 3012-3017.
[12] CAMARILLO D, MILNE C, CARLSON C, et al. Mechanics modeling of tendon-driven continuum manipulators[J]. IEEE Transactions on Robotics, 2008, 24(6): 1262-1273
[13] NING K, WORGOTTER F. A novel concept for building a hyper-redundant chain robot[J]. IEEE Transactions on Robotics, 2009, 25(6): 1237-1248
[14] SHANG J, NOONAN D P, PAYNE C, et al. An articulated universal joint based flexible access robot for minimally invasive surgery[C]//IEEE International Conference on Robotics & Automation. 2011: 1147-1152.
[15] SHAMMAS E, WOLF A, CHOSET H. Three degrees-of-freedom joint for spatial hyper-redundant robots[J]. Mechanism and Machine Theory, 2006, 41(2): 170-190
[16] 苗雨. 一种软体机器人执行器的建模与实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2017
[17] 侯尧花, 张占一, 黄晋英, 等. 基于Poly IIR方法悬臂梁模态参数识别与研究[J]. 中国测试, 2018, 44(6): 134-139