您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>水润滑轴承非接触式电磁加载装置研究

水润滑轴承非接触式电磁加载装置研究

2005    2020-06-22

免费

全文售价

作者:袁哲1,2, 王楠1,2,3, 王鹏1,2, 梁应选1,2, 岳晓奎3

作者单位:1. 陕西理工大学机械工程学院, 陕西 汉中 723001;
2. 陕西省工业自动化重点实验室, 陕西 汉中 723001;
3. 西北工业大学 航天飞行动力学技术国家级重点实验室, 陕西 西安 710072


关键词:水润滑轴承;非接触;电磁理论;加载装置


摘要:

为深入研究水润滑轴承带载工况下的特性,设计一种非接触式电磁加载装置,并通过理论计算、建模仿真与试验相结合的方法对该装置性能进行研究。首先,介绍电磁加载装置结构与原理,建立该装置等效磁路图,并基于麦克斯韦电磁理论推导出电磁加载力方程;然后,建立电磁加载装置三维有限元模型,对仿真结果进行分析;最后进行水润滑轴承加载试验,将电磁力仿真、理论及试验结果进行对比分析。研究结果表明,磁感线在加载盘底部最为密集,电磁加载装置漏磁很少,电磁力仿真值与实际值最大误差为10.7%,证明该装置合理。


Research on non-contact electromagnetic loading device for water-lubricated bearing
YUAN Zhe1,2, WANG Nan1,2,3, WANG Peng1,2, LIANG Yingxuan1,2, YUE Xiaokui3
1. School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China;
2. Shaanxi Key Laboratory of Industrial Automation, Hanzhong 723001, China;
3. National Key Laboratory of Aero Space Flight Dynamics, Northwest Polytechnical University, Xi'an 710072, China
Abstract: In order to deeply study the characteristics of water-lubricated bearing under loading condition, a non-contact electromagnetic loading device was designed, and its performance was studied by theoretical calculation, modeling simulation and test. Firstly, the structure and principle of device are introduced, the equivalent magnetic circuit diagram of device is built, and the electromagnetic loading force equation is derived based on maxwell's electromagnetic theory. Then, the three-dimensional finite element model of device is established and the simulation results are analyzed. Finally, the loading test of water-lubricated bearing is carried out, and the results among electromagnetic force simulation, theory and test are compared and analyzed. The results show that the magnetic induction line is concentrated at the bottom of loading plate, the magnetic flux leakage of electromagnetic loading device is least, the maximum error of electromagnetic force between simulated value and actual value is 10.7%, and the rationality of the device is verified.
Keywords: water-lubricated bearing;non-contact;electromagnetic theory;loading device
2020, 46(6):95-100  收稿日期: 2020-03-10;收到修改稿日期: 2020-04-22
基金项目: 国家自然科学基金项目(51605269);陕西省高校青年杰出人才支持计划项目(SLGQD1802);陕西理工大学博士启动基金项目(SLGD1812)
作者简介: 袁哲(1995-),男,陕西西安市人,硕士研究生,专业方向为机电设备监测与控制
参考文献
[1] 劳坤胜. 船舶网孔阻尼型水润滑尾轴承减振降噪机理研究[D]. 武汉: 武汉理工大学, 2018.
[2] 刘鑫. 高速水润滑动压螺旋槽轴承的空化实验研究[D]. 南京: 东南大学, 2018.
[3] 杨国峰. 轴承试验台设计及水润滑橡胶轴承摩擦特性研究[D]. 上海: 上海交通大学, 2017.
[4] WOJCIECH L. Experimental research on water lubricated three layer sliding bearing with lubrication grooves in the upper part of the bush and its comparison with a rubber bearing[J]. Tribology International, 2015, 82: 153-161
[5] 欧阳武, 程启超, 金勇, 等. 基于熵权模糊综合评价法的水润滑尾轴承性能评估[J/OL]. 中国机械工程:1-8[2020-01-06].http://kns.cnki.net/kcms/detail/42.1294.TH.20191014.1202.024.html.
[6] XIE Z L, SONG P, HAO L, et al. Investigation on effects of Fluid-Structure-Interaction (FSI) on the lubrication performances of water lubricated bearing in primary circuit loop system of nuclear power plant[J]. Annals of Nuclear Energy, 2020, 141: 107355
[7] 周广武. 水润滑橡胶合金轴承混合润滑分析与动力学性能优化[D]. 重庆: 重庆大学, 2013.
[8] 邱博. 船舶推进轴系轴承动载荷与振动耦合研究[D]. 武汉: 武汉理工大学, 2017.
[9] 叶晓琰, 冯耀宁, 汪靖, 等. 海水淡化泵水润滑轴承试验测试与分析[J]. 排灌机械工程学报, 2015, 33(6): 510-515
[10] SHINDE A B, CHAVAN S P. Parametric investigation of surface texturing on performance characteristics of water lubricated journal bearing using FSI approach[J]. SN Applied Sciences, 2019, 2(10): 189-197
[11] 贾谦, 欧阳武, 张雪冰, 等. 水润滑轴承刚度测试中磁力加载激振技术研究[J]. 机械设计与制造, 2014(11): 99-101,105
[12] 邱荣华, 刘宏昭. 高速电主轴非接触电磁加载装置设计与实现[J]. 中国机械工程, 2014, 25(8): 1027-1032
[13] 康小丽. 电主轴非接触电磁加载分析及改进[D]. 西安: 西安理工大学, 2018.
[14] 王楠, 杨利涛, 梁应选, 等. 非接触式电磁加载水润滑轴承监测系统[J]. 中国机械工程, 2019, 30(24): 3004-3009