您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>翼型厚度对水动力特性影响的数值模拟分析

翼型厚度对水动力特性影响的数值模拟分析

1770    2020-05-27

免费

全文售价

作者:李淑江, 张育辉, 窦如宏

作者单位:青岛科技大学机电工程学院, 山东 青岛 266061


关键词:水动力特性;翼型厚度;数值模拟;CFD


摘要:

为探索水力机械不同厚度非对称翼型水动力特性的变化规律,通过CFD软件基于RNG k-ε湍流模型以NACA 65-206、NACA 65-210两种非对称翼型为研究对象进行水动力特性数值模拟计算,对比分析两种翼型在来流速度为2 m/s的工况以及翼型攻角(攻角定义为来流速度方向与翼型弦线之间的夹角)介于-10°~35°范围内的流动特性变化,通过计算得到翼型的阻力、升力,并绘制升阻比值曲线图,结合速度等值线图和压力云图分析翼型厚度对升力特性、阻力特性、升阻比特性以及翼型失速等水动力性能与攻角变化的关系。对比得出,增大翼型厚度有助于扩宽升阻比所对应的攻角范围,并且两翼型的升阻比特性与翼型的绕流特性具有明显差异。结果有益于了解水力机械叶片翼型的水动力特性,可为水力机械叶轮叶片翼型的设计提供理论依据。


Numerical simulation analysis of influence for airfoilthickness on hydrodynamic characteristics
LI Shujiang, ZHANG Yuhui, DOU Ruhong
School of Mechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
Abstract: In order to explore the variation of hydrodynamic characteristics of asymmetric airfoils with different thicknesses in hydromechanical machines. Based on the RNG k-ε turbulence model by CFD software, numerical simulation calculations of hydrodynamic characteristics are performed using two types of asymmetric airfoils NACA 65-206 and NACA 65-210. The flow characteristics of the two airfoils under the condition of the inlet velocity of 2 m/s and the angle of attack (the angle of attack is defined as the angle between the direction of velocity and the airfoil string) of the airfoils between -10° and 35° are compared and analyzed. The drag and lift force of the airfoil were calculated, and the lift and drag ratio curve was drawn. The relationship between the aerodynamic characteristics of airfoil thickness and the change of the angle of attack, such as lift characteristic, drag characteristic, lift-to-drag ratio characteristic, airfoil stall speed and so on, is analyzed by combining the velocity contour diagram and pressure cloud diagram. The comparison shows that increasing the thickness of the airfoil is helpful to widen the range of attack angles corresponding to the lift-to-drag ratio, and the lift-drag characteristic of the two airfoils is significantly different from the airflow around the airfoil. The results are helpful for understanding the hydrodynamic characteristics of hydromechanical blade airfoil, and it can provide a theoretical basis for the design of hydromechanical blade airfoil.
Keywords: hydrodynamic characteristics;airfoil thickness;numerical simulation;CFD
2020, 46(5):148-153  收稿日期: 2019-07-21;收到修改稿日期: 2019-08-27
基金项目:
作者简介: 李淑江(1976-),男,山东临沂市人,副教授,博士,主要从事游艇设计及人机交互研究
参考文献
[1] 袁新, 江学忠. 翼型大攻角低速分离流动的数值模拟[J]. 工程热物理学报, 1999(2): 161-165
[2] 王菲, 吕剑虹, 王刚. 翼型厚度对风力机叶片翼型气动特性的影响[J]. 流体机械, 2011, 39(12): 5-8,4
[3] 宋晨光, 赵振宙, 吴国庆, 等. 风速和翼型弯度对垂直轴风机气动性能的影响[J]. 排灌机械工程学报, 2018, 36(3): 243-249
[4] 王文龙, 何斌, 傅洁, 等. 风力机翼型大攻角分离流的数值模拟[J]. 可再生能源, 2012, 30(8): 38-41
[5] 王家禄, 孙茂, 连淇祥. 等速上仰翼型流动结构的实验研究[J]. 中国科学(A辑数学物理学天文学技术科学), 1993(12): 1303-1310
[6] 吴鋆, 王晋军, 李天. NACA0012翼型低雷诺数绕流的实验研究[J]. 实验流体力学, 2013, 27(6): 32-38
[7] 朱炳泉, 李百齐, 杨孝忠. 二维兴波水翼水动力预报的涡分布法[J]. 水动力学研究与进展(A辑), 1996(5): 590-597
[8] 张亚锋, 宋笔锋, 李占科. 高升力翼型的气动优化设计和实验研究[J]. 飞行力学, 2006(4): 70-72
[9] 马艳, 庞永杰, 范亚丽. 基于iSIGHT平台的翼型水动力优化[J]. 船舶力学, 2011, 15(8): 867-873
[10] 徐国武, 白鹏, 石文. 二维翼型可变形方案初步研究[J]. 力学季刊, 2011, 32(4): 570-576
[11] 王肇, 宋红军, 尹协振. 二维机翼非定常运动的涡流场显示——沉浮运动[J]. 流体力学实验与测量, 2004(2): 71-76
[12] 满洪海, 杜刚, 陈江. 风力机翼型动态失速数值模拟[J]. 太阳能学报, 2012, 33(10): 1641-1647
[13] 周姣, 杨科, 张磊, 等. 基于大涡模拟的风力机翼型失速机制探讨[J]. 工程热物理学报, 2013, 34(11): 2048-2051
[14] 王友进, 闫超, 周涛. 不同厚度翼型动态失速涡运动数值研究[J]. 北京航空航天大学学报, 2006(2): 153-157
[15] 胡帅, 宋文武, 程伟, 等. 翼型水动绕流特性数值模拟分析[J]. 水电能源科学, 2017, 35(6): 147-150,166
[16] 王志东, 朱仁庆. 近水面航行二维水翼的水动力特性研究[J]. 船舶工程, 2004(3): 12-15
[17] YAO Z L, CHEN C H. Application of the improved collaborative optimization on ships’ conceptual design[J]. Chuan Bo Li Xue/Journal of Ship Mechanics, 2014, 18(12): 1453-1459
[18] 肖国权, 李天成, 黎日升, 等. 小型无人船阻力CFD模拟方法[J]. 中国测试, 2018, 44(12): 69-74
[19] 常欣, 郭春雨, 王超, 等. Fluent船舶流体力学仿真计算工程应用基础[M]. 哈尔滨: 哈尔滨工程大学出版社, 2011.