您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>高硅粉煤灰基二氧化硅气凝胶的物理表征及其CO2捕集应用

高硅粉煤灰基二氧化硅气凝胶的物理表征及其CO2捕集应用

1863    2020-05-27

免费

全文售价

作者:缪应菊1,2,3, 李琳1,2, 缪应纯4, 陕绍云3

作者单位:1. 六盘水师范学院化学与材料工程学院, 贵州 六盘水 553004;
2. 贵州省煤炭洁净利用重点实验室, 贵州 六盘水 553004;
3. 昆明理工大学化学工程学院, 云南 昆明 650500;
4. 曲靖师范学院化学与环境科学学院, 云南 曲靖 655000


关键词:粉煤灰;二氧化硅气凝胶;物理表征;CO2捕集


摘要:

以六盘水高硅粉煤灰为原料,联合溶胶-凝胶工艺和冷冻干燥技术制备二氧化硅气凝胶,采用TG、XRF、FTIR、TEM、N2吸附脱附等对所制备的二氧化硅气凝胶进行表征并研究其在常温常压下的CO2捕集性能。结果表明:所制备的二氧化硅气凝胶热稳定性良好,纯度高(99.586%),由5~10 nm的二氧化硅纳米颗粒组成,兼具微孔、介孔的复合孔结构,微孔区比表面积为553.73 m2/g,介孔区比表面积455.47 m2/g;常温常压下CO2饱和吸附容量为1.22 mmol/g,CO2等量吸附热在38.7~39.1 kJ/mol之间,CO2/N2选择性为28.44。


Characterization of silica aerogels synthesized from high-Si fly ash and its application in CO2 capture
MIAO Yingju1,2,3, LI Lin1,2, MIAO Yingchun4, SHAN Shaoyun3
1. School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China;
2. Guizhou Provincial Key Laboratory of Coal Clean Utilization, Liupanshui 553004, China;
3. Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China;
4. College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655000, China
Abstract: High-Si fly ash from Liupanshui were used as raw materials to synthesize silica aerogels via sol-gel process and freeze-drying technology, TG, XRF, FTIR, TEM, as well as N2 adsorption and desorption were used to characterize the silica aerogels. The resulting aerogels had good thermal stability and high purity (99.586%), and were composed of 5-10 nm silica nanoparticles with a composite pore structure of micropore and mesoporous. The specific surface areas of the micropore district and the mesoporous district were 553.73 m2/g and 455.47 m2/g, respectively. The as-synthesized aerogels were tested for CO2 sorption at ambient temperature and pressure, displaying maximum CO2 adsorption capacities of about 1.22 mmol/g via a physisorption. Furthermore, the isosteric heat of adsorption was at the range of 38.7-39.1 kJ/mol and the selectivity for CO2/N2 was 28.44.
Keywords: fly ash;silica aerogels;physical characterization;CO2 capture
2020, 46(5):51-56,64  收稿日期: 2019-11-20;收到修改稿日期: 2020-01-05
基金项目: 国家自然科学基金(21766016);贵州省科学技术基金([2018]2334);曲靖师范学院应用基础研究(2077360172);云南省青年拔尖人才项目(YNWR-QNBJ-2018-198);贵州省煤炭洁净利用重点实验室(黔科合平台人才[2020]2001)
作者简介: 缪应菊(1983-),女,云南宣威市人,副教授,博士,主要从事固体废弃物的资源化利用及无害化处置
参考文献
[1] DORCHEH A S, ABBASI M H. Silica aerogel: synthesis, properties and characterization[J]. J Mater Process Tech, 2008, 199(1-3): 10-26
[2] GURAV J L, JUNG I K, PARK H H, et al. Silica aerogel: synthesis and applications[J]. J Nanomater, 2010, 199(1-3): 10-26
[3] MALEKI H. Recent advances in aerogels for environmental remediation applications: A review[J]. Chemical Engineering Journal, 2016, 300: 98-118
[4] MERMER N K, PISKIN S. Silica based aerogel synthesis from fly ash and bottom ash: The effect of synthesis parameters on the structure[J]. Main Group Chem, 2018, 17(1): 63-77
[5] ZHENG M, XU H X, ZHU P H, et al. Synthesis and physicochemical properties of SiO2 aerogel via recycled fly ash[J]. Material Engineering and Mechanical Engineering, 2016: 1415-1422
[6] LEE Y R, SOE J T, ZHANG S, et al. Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review[J]. Chemical Engineering Journal, 2017, 317: 821-843
[7] NAZRIATI N, SETYAWAN H, AFFANDI S, et al. Using bagasse ash as a silica source when preparing silica aerogels via ambient pressure drying[J]. Journal of non-crystalline solids, 2014, 400: 6-11
[8] LIU S W, WEI Q, CUI S-P, et al. Hydrophobic silica aerogel derived from wheat husk ash by ambient pressure drying[J]. Journal of Sol-Gel Science and Technology, 2016, 78(1): 60-67
[9] FENG Q, CHEN K, MA D, et al. Synthesis of high specific surface area silica aerogel from rice husk ash via ambient pressure drying[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539: 399-406
[10] ZHU P, ZHENG M, ZHAO S, et al. Synthesis and thermal insulation performance of silica aerogel from recycled coal gangue by means of ambient pressure drying[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2015, 30(5): 908-913
[11] ZHU P, ZHENG M, ZHAO S, et al. A novel environmental route to ambient pressure dried thermal insulating silica aerogel via recycled coal gangue[J]. Advances in Materials Science and Engineering, 2016, 2016: 1-9
[12] WU X, FAN M, MCLAUGHLIN J F, et al. A novel low-cost method of silica aerogel fabrication using fly ash and trona ore with ambient pressure drying technique[J]. Powder Technol, 2018, 323: 310-322
[13] SHI F, LIU J X, SONG K, et al. Cost-effective synthesis of silica aerogels from fly ash via ambient pressure drying[J]. Journal of non-crystalline solids, 2010, 356(43): 2241-2246
[14] WANG J, HUANG L, YANG R, et al. Recent advances in solid sorbents for CO2 capture and new development trends[J]. Energy Environ Sci, 2014, 7(11): 3478-3518
[15] SAMANTA A, ZHAO A, SHIMIZU G K H, et al. Post-combustion CO2 capture using solid sorbents: A Review[J]. Industrial & Engineering Chemistry Research, 2011, 51(4): 1438-1463
[16] 缪应菊, 沈秋玉, 周钰, 等. 高硅高铁粉煤灰制备SiO2的工艺研究[J]. 硅酸盐通报, 2016, 35(4): 1260-1264
[17] 近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 李国希, 译. 2版. 北京: 化学工业出版社, 2005.
[18] ASHORI A, SHEYKHNAZARI S, TABARSA T, et al. Bacterial cellulose/silica nanocomposites: Preparation and characterization[J]. Carbohydrate polymers, 2012, 90(1): 413-418
[19] FIDALGO A, ILHARCO L M. The defect structure of sol-gel-derived silica/polytetrahydrofuran hybrid films by FTIR[J]. J Non-Cryst Solids, 2001, 283(1-3): 144-154
[20] HE F, HE X, YANG W, et al. In-situ synthesis and structural characterization of cellulose-silica aerogels by one-step impregnation[J]. Journal of Non-Crystalline Solids, 2018, 488: 36-43
[21] LIU K, FENG Q, YANG Y, et al. Preparation and characterization of amorphous silica nanowires from natural chrysotile[J]. Journal of Non-Crystalline Solids, 2007, 353(16-17): 1534-1539
[22] 高睿, 周张健, 张宏博, 等. 二氧化硅气凝胶高温稳定性研究[J]. 无机盐工业, 2019, 9: 11
[23] BIEN C E, CHEN K K, CHIEN S C, et al. Bioinspired metal-organic framework for trace CO2 capture[J]. J Am Chem Soc, 2018, 140(40): 12662-12666
[24] VERMA S, MISHRA A K, KUMAR J. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores[J]. Accounts of chemical research, 2009, 43(1): 79-91