登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于介电常数法的润滑油水含量测量装置设计

基于介电常数法的润滑油水含量测量装置设计

189    2020-04-27

¥0.50

全文售价

作者:张勇, 孙震宇, 薛程雄, 解祯, 朱艳军, 李茂杰

作者单位:华南理工大学机械与汽车工程学院, 广东 广州 510640


关键词:润滑油;电容传感器;介电常数法;在线检测


摘要:

针对润滑油过高含水量会影响动力机械正常工作的问题,设计一种基于介电常数测量的双管式电容传感器及配套的检测系统。该传感器采用双管式设计,内管设计成表面均匀分布圆孔的空心圆筒,使润滑油能更快流通从而提高含水量在线测量的响应速度和准确度。通过Maxwell软件对传感器进行仿真求解,与不同含水量下的测量值进行对比实验,另外进行高温下的测试。实验结果表明:该套设备发现理论值和实验值误差小于5%,在恶劣的高温条件下依旧具有充足的重复性与稳定性,能够有效检测润滑油含水量,具有良好的使用价值。


Design of measuring device for lubricating oil water content based on dielectric constant method
ZHANG Yong, SUN Zhenyu, XUE Chengxiong, XIE Zhen, ZHU Yanjun, LI Maojie
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
Abstract: Aiming at the problem that excessive water content of lubricating oil will affect the normal work of power machinery, a double-tube capacitive sensor based on the measurement of dielectric constant and a detection system are designed. The sensor adopts a double-tube design, and the inner tube is designed as a hollow cylinder with circular holes evenly distributed on the surface, so that the lubricating oil can flow more quickly, the response speed and accuracy of online measurement of water content can be improved. Maxwell software was used to simulate and solve the sensor, and the experiment was compared with the measured values under different water content. In addition, the test was carried out under high temperature. The experimental results show that the error between the theoretical value and the experimental value is less than 5%, and the equipment still has sufficient repeatability and stability under severe high temperature conditions, and can effectively detect the water content of lubricating oil, so it has good use value.
Keywords: lubricating oil;capacitance sensor;dielectric constant method;on-line inspection
2020, 46(4):86-90  收稿日期: 2019-07-26;收到修改稿日期: 2019-12-06
基金项目:
作者简介: 张勇(1969-),男,河北保定市人,教授,博士,主要从事车辆电子、摩擦学、润滑油等方面研究
参考文献
[1] ROYLANCE B J. Ferrography:then and now[J]. Tribology International, 2005, 38:857-862
[2] 张勇,黄健鹏,张威. 车载润滑油污染度实时监测系统设计[J]. 中国测试, 2016, 42(s1):16-20
[3] 邵莉, 陆辰, 陆家祥. 汽车发动机润滑油的劣化和更换[J]. 内燃机工程, 2001, 22(2):16-19
[4] RAADNUI S, KLEESUWAN S. Low-cost condition monitoring sensor for used oil analysis[J]. Wear, 2002, 259:1502-1506
[5] 王德岩, 褚建林. 循环伏安法在润滑油检测中的应用[J]. 石化技术, 2006(2):32-34
[6] 孙朝杰. 基于微流控芯片红外吸收的润滑油含水量检测[D]. 大连:大连海事大学, 2014.
[7] 韩婷婷. 基于介电常数的电容式油品传感器设计[D]. 南京:南京理工大学, 2015.
[8] 叶丹丹, 王晓静, 罗梅杰, 等. 卡尔费休法测定润滑油产品中的含水量[J]. 石化技术, 2018, 25(8):101-102
[9] 李钰洁, 王长湖, 田洪祥. 润滑油含水率检测电容传感器的设计及实验研究[J]. 润滑与密封, 2011, 36(9):107-110, 113
[10] 张晓飞, 杨定新, 胡政, 等. 基于电介质介电常数测量的油液在线监测技术研究[J]. 传感技术学报, 2008, 21(12):2089-2091
[11] 张晨辉, 林亮智. 润滑油应用及设备润滑[M]. 北京:中国石化出版社, 2001:45-61.
[12] 柴世文, 徐永明, 韩晓明, 等. 基于水活度的润滑油微水在线检测方法研究[J]. 机械研究与应用, 2017,30(1):133-140.
[13] 张玉民, 戚伯云. 电磁学[M]. 北京:科学出版社, 2007:78~79.