登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>半桥逆变型磁共振式无线充电系统建模与控制

半桥逆变型磁共振式无线充电系统建模与控制

187    2020-02-27

¥0.50

全文售价

作者:曾得志, 薛家祥

作者单位:华南理工大学机械与汽车工程学院, 广东 广州 510640


关键词:磁共振式无线充电技术;半桥谐振逆变;广义状态空间平均法;BP神经网络自整定PID控制


摘要:

针对半桥谐振逆变型磁共振式无线充电(MCR-WCT)系统工作状态模糊、高阶非线性、控制理论不成熟等问题,在建立半桥谐振逆变电路等效模型的基础上,采用广义状态空间平均法(GSSA)对MCR-WCT系统进行大信号和小信号建模,在GSSA模型的基础上设计电流单闭环控制器,制定基于BP神经网络的自整定PID控制策略。最后,通过Matlab编程对GSSA大信号模型进行暂态和稳态分析,对比Simulink模型仿真结果验证GSSA模型的可行性;通过Matlab仿真对比经典PID控制和BP神经网络自整定PID控制策略,在电流设定值为1 A的阶跃响应中,BP神经网络自整定PID控制在0.25 ms内达到稳态,稳态误差在2%内,最大超调量只有5%,相比经典PID控制具有更好的动静态性能。


Modeling and control of half-bridge inverter based magnetic coupling resonant wireless charging system
ZENG Dezhi, XUE Jiaxiang
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
Abstract: In order to solve the problems in the half-bridge inverter based magnetic coupling resonant wireless charging (MCR-WCT) system, including working status ambiguity, high order nonlinearity and immature control theory, the equivalent model of half-bridge resonant inverter was established. And the generalized state-space averaging method (GSSA) was used to build up the large and small signal model of the MCR-WCT system. Furthermore, the current single closed loop controller was designed on the basis of the GSSA model, and then the self-tuning PID control strategy based on BP neural network came up. Finally, the transient and steady-state analysis of the GSSA large signal model was carried out through Matlab simulation, and the simulation results of the Simulink model were compared to verify the feasibility of the GSSA model. The traditional PID control algorithm and the BP neural network self-tuning PID control algorithm were compared through Matlab simulation. In the step response of the current setting value of 1 A, the BP neural network self-tuning PID control algorithm reached the steady-state within 0.25 ms, while the steady-state error was within 2%, and the overdose was only 5%. Compared with the traditional PID control, it had better dynamic and static performance.
Keywords: magnetic coupling resonant wireless charging technology;half-bridge resonant inverter;generalized state-space averaging;BP neural network self-tuning PID control
2020, 46(2):110-116,154  收稿日期: 2019-04-09;收到修改稿日期: 2019-06-04
基金项目: 福建省自然基金项目(2018J01541);广州市南沙区科技计划项目(2017CX009);2015东莞市引进第三批创新科研团队项目(2017360004004)
作者简介: 曾得志(1996-),男,广东揭阳市人,硕士研究生,专业方向为智能化检测及仪器
参考文献
[1] 杨旭, 游林儒, 文小琴, 等. 基于脉宽调变控制的可调电感补偿的谐振式无线充电技术[J]. 科学技术与工程, 2018, 18(3):259-263
[2] 李小磊, 秦会斌. 磁耦合谐振式的电动汽车无线充电系统研究[J]. 通信电源技术, 2018, 35(9):1-3
[3] DAS B S, REZA A W, KUMAR N, et al. Wireless powering by magnetic resonant coupling:Recent trends in wireless power transfer system and its applications[J]. Renewable & Sustainable Energy Reviews, 2015, 51:1525-1552
[4] 来华星. 基于磁耦合谐振的无线电能传输系统的研究[D]. 淮南:安徽理工大学, 2016.
[5] 秦俊堂. 分布式无线电能传输系统的磁耦合组合谐振线圈结构的设计与实现[D].南昌:南昌大学, 2016.
[6] 王文涛. 电动汽车谐振式无线充电技术的研究[D]. 兰州:兰州理工大学, 2016.
[7] 余梅. 一种磁耦合谐振式无线电能传输系统的研究[D]. 淮南:安徽理工大学, 2015.
[8] 陈琛. 谐振式无线电能传输系统的若干电磁问题研究及优化设计[D]. 南京:东南大学, 2016.
[9] 陈苓芷. ECPT系统控制器参数优化及其稳压输出控制[D].重庆:重庆大学, 2016.
[10] LEE B H, YI K H. Magnetic resonance wireless power transfer with a current source transmitter and a voltage source receiver[C]//IEEE Wireless Power Transfer Conference (WPTC), 2017.
[11] 刘宁. 基于磁耦合谐振的无线电力传输系统特性研究[D]. 济南:山东大学, 2014.
[12] SHAO L, LI Q, TAN C, et al. A Study of magnetic resonance wireless power transfer system based on half bridge inverter[C]//Vehicle Power & Propulsion Conference, 2016.
[13] FU M, TANG Z, MA C. Analysis and optimized design of compensation capacitors for a megahertz wpt system using full-bridge rectifier[J]. IEEE Transactions on Industrial Informatics, 2019, 15(1):95-104
[14] ZAHID Z U, DALALA Z M, ZHENG C, et al. Modeling and control of series-series compensated inductive power transfer system[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2015, 3(1):111-123
[15] SUN Y, ZHANG H, HU A P, et al. The recognition and control of nonideal soft-switching frequency for wireless power transfer system based on waveform identification[J]. IEEE Transactions on Power Electronics, 2017, 32(8; 8):6617-6627
[16] 李砚玲, 黄立敏, 刘野然, 等. 非接触移动供电系统不同补偿拓扑下的鲁棒性分析[J]. 西南交通大学学报, 2016, 51(6):1230-1238
[17] 周继昆, 吴付岗, 张荣. LCL型IPT系统广义状态空间平均法建模与分析[J]. 科技通报, 2015, 31(11):215-219
[18] 颜香梅. 磁耦合谐振式无线电能传输输出稳压控制策略的研究[D]. 长沙:湖南大学, 2015.
[19] 宁世超. 磁耦合谐振式无线充电系统设计与仿真[D]. 阜新:辽宁工程技术大学, 2014.
[20] 蔡华, 史黎明, 李耀华. 感应耦合电能传输系统输出功率调节方法[J]. 电工技术学报, 2014, 29(1):215-220