登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>PSO优化的SVM旋压触探岩土识别方法

PSO优化的SVM旋压触探岩土识别方法

196    2020-02-27

¥0.50

全文售价

作者:贾欣蔚1, 郗涛1, 王莉静2

作者单位:1. 天津工业大学机械工程学院, 天津 300387;
2. 天津城建大学控制与机械工程学院, 天津 300384


关键词:旋压触探;岩土识别;粒子群;支持向量机


摘要:

针对现有的旋压触探测量精确度不高,没有准确的土力学模型的问题,该文提出基于支持向量分类机的岩土识别方法,并且用粒子群寻优算法来确定支持向量机的惩罚因子和核函数参数。首先,根据旋压触探勘测的实际情况,选取锥尖阻力、侧壁阻力、摩阻比、探杆倾斜角、岩土温度及湿度等参数构建旋压触探分析的指标决策体系;其次,基于粒子群寻优算法和支持向量分类机,建立岩土测试指标和土力学指标映射体系;最后在天津某地进行5次实地勘测,通过得到的静力触探和旋压触探的711组对比数据,进行该方法的验证,其分类结果准确率大于96%,符合实际工程的需要。


Rock and soil identification by using rotary penetration sounding tests based on SVM optimized by PSO
JIA Xinwei1, XI Tao1, WANG Lijing2
1. School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
2. School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin 300384, China
Abstract: Due to the accuracy of rota penetration sounding tests is not high, and the soil mechanics model is not accurate. A rock and soil identification method based on a SVM is proposed, and using PSO to determine the penalty factor and kernel function parameters of SVM. Firstly, according to the actual situation of rotary penetration sounding tests, selecting parameters such as cone tip resistance, sidewall resistance, friction ratio, probe inclination angle, geotechnical temperature and humidity to construct index decision system for rotary penetration sounding tests.Secondly, based on the PSO and SVM, a mapping system for geotechnical testing indicators and soil mechanics indicators is established.Finally, five field surveys were carried out in a certain place in Tianjin. The verification of this method was performed by the 711 comparative data of static penetration tests and rotary penetration sounding tests. The accuracy of the classification results is over 96%, which was in line with the actual project.
Keywords: rotary penetration sounding tests;rock and soil identification;PSO;SVM
2020, 46(2):91-95,102  收稿日期: 2018-07-03;收到修改稿日期: 2018-10-12
基金项目: 天津市科技特派员项目(14JCTPJC00541);天津市科技型中小企业创新基金项目(13ZXCXGX34000)
作者简介: 贾欣蔚(1994-),男,河北唐山市人,硕士研究生,专业方向为检测技术与自动化装置
参考文献
[1] 吴道祥, 单灿灿, 钟轩明, 等. 静力触探的发展及其在岩土工程中的应用[J]. 合肥工业大学学报(自然科学版), 2008(2):211-215
[2] 李庆丰. 浅谈静力触探技术在岩土工程勘察中的应用及发展前景展望[J]. 福建建筑, 2014(7):83-85
[3] 赵新宏, 尹建. 一种新型无缆静力触探设备的研发[J]. 工程勘察, 2016, 44(11):19-25
[4] 宋玲, 刘奉银, 李宁. 旋压入土式静力触探机制研究[J]. 岩土力学, 2011, 32(S1):787-792
[5] 宋玲, 李宁, 刘奉银. 较硬地层中旋进触探技术应用可行性研究[J]. 岩土力学, 2011, 32(2):635-640
[6] 陈新军, 杨怀玉, 赵凤林. 应用旋转触探试验划分地层及确定土类定名方法研究[J]. 工程勘察, 2012, 40(4):16-20
[7] NIETO P J G, GARCIA G E, SANCHEZ A B, et al. Air quality modeling using the PSO-SVM-based approach, MLP neural network, and M5 model tree in the metropolitan area of oviedo (Northern Spain)[J]. Environmental Modeling & Assessment, 2017(4):1-19
[8] DING S, HANG J, WEI B, et al. Modelling of supercapacitors based on SVM and PSO algorithms[J]. Iet Electric Power Applications, 2018, 12(4):502-507
[9] HAN B, BIAN X Q. A hybrid PSO-SVM-based model for determination of oil recovery factor in the low-permeability reservoir[J]. Petroleum, 2017(6):1
[10] CHEN X, SUN S, PU X. A new rotary penetration sounding device and its testing method[J]. Geomechanics and Geotechnics:From Micro to Macro, 2010, 31(7):1073-1079
[11] 赵洪波. 岩爆分类的支持向量机方法[J]. 岩土力学, 2005(04):642-644
[12] 李航. 统计学习方法[M]. 北京:清华大学出版社, 2012, 95-135.
[13] Dilmen E, Beyhan S. An enhanced online LS-SVM approach for classification problems[J]. Soft Computing, 2017(6):1-19
[14] 白龙, 孙强. 基于SVM和DS证据理论的网络攻击检测研究[J]. 科技通报, 2017, 33(06):196-200
[15] TRAN B, BING X, ZHANG M. A new representation in PSO for discretization-based feature selection[J]. IEEE Trans Cybern, 2017, PP(99):1-14