登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>工业超声波燃气表内部结构设计的气体流动仿真研究

工业超声波燃气表内部结构设计的气体流动仿真研究

246    2020-02-27

¥0.50

全文售价

作者:翟义然1,2, 赵勇2, 刘义2, 张彬1

作者单位:1. 四川大学电气工程学院, 四川 成都 610065;
2. 成都千嘉科技有限公司, 四川 成都 610211


关键词:超声波;燃气表;气体流速;CFX仿真


摘要:

利用流体动力学仿真软件CFX对新设计的G10超声波燃气表腔体结构的气体流动进行仿真研究和分析。在大、中、小流量点上分别仿真新设计结构内的气体流动,获得超声波燃气表的整个腔体内、腔体的YZ轴向截面上、XZ轴向截面上和XY轴向截面上的气体流速分布,并进一步获得3个截面上属于超声波测量的内流道部分的气体流速分布。对仿真结果进一步分析发现,与整个腔体气体流动和整个轴向截面上气体流动相比,超声波测量部分截面内气体流动更快,但相对更均匀和稳定,有利于超声波气体流速的准确测量。最后给出基于该设计结构的超声波燃气表样机的检测结果,检测结果也验证了用仿真来辅助表体结构设计的可行性。


Gas flow simulation study on internal structure design of industrial ultrasonic gas meter
ZHAI Yiran1,2, ZHAO Yong2, LIU Yi2, ZHANG Bin1
1. College of Electrical Engineering, Sichuan University, Chengdu 610065, China;
2. Chengdu Qianjia Technology Co., Ltd., Chengdu 610211, China
Abstract: Gas fluid dynamics of a new designed structure of G10 ultrasonic gas meter are simulated by CFX of ANSYS. Results of gas flowing velocity at large flow point, at middle flow point and at small flow point are calculated and analyzed, respectively. Gas velocity of the whole inside, that of YZ axis cross plane, that of XZ axis cross plane, that of XY axis cross plane and of the internal part of above three axis cross planes where ultrasonic wave passing through is obtained. The simulation results reveal that gas fluid of the internal flow path where ultrasonic wave passing through is faster. However, it is more uniform and more stable than that of the whole inside and that of the according axis cross planes, which is advantageous to accurate measurement of gas flowing velocity. At last, test results of ultrasonic gas meters manufactured based on the new designation are presented, and which verifies the feasible of using simulation to assist structure designation of ultrasonic gas meter.
Keywords: ultrasonic;gas meter;gas velocity;CFX simulation
2020, 46(2):87-90  收稿日期: 2018-07-31;收到修改稿日期: 2018-10-17
基金项目:
作者简介: 翟义然(1973-),河北承德市人,高级工程师,博士,主要从事超声波测量应用和医学信号处理研究
参考文献
[1] LYNNWORTH L C, LIU Y. Ultrasonic flowmeters:Half-century progress report[J]. Ultrasonics, 2006, 44:1371-1378
[2] 张涛, 蒲诚, 赵宇洋. 传播时间法超声流量计信号处理技术进展述评[J]. 化工自动化及仪表, 2009, 36(4):1-7
[3] 周蕾蕾, 朱云, 易丽, 等. 弯径变化对超声波燃气表特性影响的研究[J]. 科学技术与工程, 2016, 16(23):244-247
[4] 翟义然, 赵勇, 胡小川, 等. 用CFX软件对超声波燃气表气体流道仿真研究[J]. 中国测试, 2016, 42(5):135-139
[5] 王秀桥, 黎红军, 赵晓军, 等. 智能超声波燃气表的技术研究[J]. 煤气与热力, 2017, 37(8):26-28
[6] KAYS R, VLADIAUSKAS A, RAIUTI R. Experimental investigation of gas flow profiles in ultrasonic flow meters[J]. Ultrasound, 2001, 40(3):27-35
[7] KCHNER H, MELLING A, BAUMGRTNER M. Optical flow field investigations for design improvements of an ultrasonic gas meter[J]. Flow Measurements & Instrumentation, 1996, 7(3-4):133-140
[8] GUO L, SUN Y, LIU L, et al. The flow field analysis and flow calculation of ultrasonic flow meter based on the fluent software[J]. Abstract and Applied Analysis, 2014(2):1-8
[9] 谢龙汉, 赵新宇, 张炯明. ANSYS CFX流体分析及仿真[M]. 北京:电子工业出版社, 2012:1.
[10] JIA H, KONG J, ZHOU S, et al. Study on the method for CFX numerical simulation of flow field in screw conveyer of sand fracturing blender[J]. Applied Mechanics & Materials, 2013, 318:207-211
[11] RYU K J, SONG S H. Ventilation efficiency in the subway environment for the indoor air quality[J]. International Scholarly and Scientific Research & Innovation, 2012, 6(3):549-553
[12] 董全林, 孟凡念, 王鹏飞, 等. 高效风机的设计及CFX仿真分析[J]. 风机技术, 2014(1Z):54-60
[13] 江莉, 陈朝阳, 周红瑞. 基于CFX的发动机三元催化器内部流场仿真[J]. 大众汽车, 2015, 88(4):88-90
[14] 付冰洋, 张建云, 李笑岩, 等. 基于CFX的往复压缩机气缸气阀腔结构研究[J]. 压缩机技术, 2017(3):19-24
[15] 翟义然, 赵勇, 胡小川, 等. 超声波燃气表内部结构设计的气体流动仿真研究[J]. 建模与仿真, 2016, 5(3):67-72