您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于模糊PID的高速列车车内压力主被动控制

基于模糊PID的高速列车车内压力主被动控制

2789    2020-01-19

免费

全文售价

作者:李新, 陈春俊

作者单位:西南交通大学机械工程学院, 四川 成都 610031


关键词:高速列车;车内压力控制;主被动控制;模糊PID


摘要:

针对高速列车在高速运行以及通过隧道和会车时在车体表面产生剧烈的压力波动,通过车体缝隙和空调换气系统传入车内影响车内压力舒适度的问题,利用高速列车内外气压传递非线性数学模型,采用主动对空调风机进行调频和被动式调节压力截止阀开度的主被动结合压力控制方式,并建立模糊PID控制器,利用模糊算法来调节PID的增益参数,从而更好地对空调风机工作频率进行调节,实时抑制车外压力向车内的传递。仿真结果表明:采用主被动结合压力控制方式,车内压力幅值、最大1 s变化率和最大3 s变化率都得到明显降低,能够有效地抑制车外压力向车内的传递;同时,优于单一的主动控制方式,可进一步提高车内压力舒适度。


Active-passive control of internal pressure of high-speed train based on fuzzy PID
LI Xin, CHEN Chunjun
School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
Abstract: For the problem high-speed train generates severe air pressure fluctuation on the body surface when running at high speed, passing through tunnels and meeting other trains. The air pressure fluctuation enter the train through the body gap and the air conditioning system, which affect the pressure comfort in the train. Using the non-linear mathematical model of air pressure transfer inside and outside of high-speed train and adopting the active-passive combined pressure control to adjust the frequency of air conditioning fan and the opening size of passive pressure globe valve. A fuzzy-PID controller is established to adjust the gain parameters of the PID by using the fuzzy algorithm, so as to better adjust the working frequency of the air-conditioning fan, and to real-time restrain the transmission of pressure from outside to inside of the train. The simulation results show that: with the active-passive combined pressure control, the train interior pressure amplitude, maximum 1 s change rate and maximum 3 s change rate have been significantly reduced. Therefore, it can effectively suppress the transmission of pressure from outside to inside of the train. At the same time, it is superior to the single active control, which further improves the comfort of the pressure in the train.
Keywords: high-speed train;pressure control inside the train;active-passive control;fuzzy-PID
2020, 46(1):105-109  收稿日期: 2019-02-21;收到修改稿日期: 2019-04-28
基金项目: 国家自然科学基金资助项目(51475387)
作者简介: 李新(1994-),男,吉林德惠市人,硕士研究生,专业方向为自动化测试技术
参考文献
[1] 吴新红. 高速动车组广义舒适度关键技术分析[J]. 城市轨道交通研究, 2018, 21(6):1-5,26
[2] LIU T H, CHEN X D, LI W H, et al. Field study on the interior pressure variations in high-speed trains passing through tunnels of different lengths[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 169:54-66
[3] 曹艳华, 李瑞淳. 高速动车组空调系统压力保护装置[J]. 国外铁道车辆, 2010, 47(6):16-21
[4] 朱一妃. 高速列车车内压力波动特性研究[D]. 北京:北京交通大学, 2017.
[5] 罗禄林. 高速列车车内压力保护装置在隧道压力波下的适应性研究[D]. 兰州:兰州交通大学, 2016.
[6] 李树典, 周新喜. CRH2型200 km/h动车组车内压力波动控制研究[J]. 机车电传动, 2009(2):6-7
[7] 丁浩, 李人宪, 刘杰. 换气风机对高速列车内部压力波动的影响分析[J]. 机械工程与自动化, 2013(4):1-3
[8] 熊文伟, 陈春俊, 方超. 高速列车车内压力波动模糊控制研究[J]. 计算机测量与控制, 2014, 22(9):2781-2783,2804
[9] 闫中奎, 陈春俊, 孙宇. 大数据高速列车车内压力波动仿真控制研究[J]. 中国测试, 2016, 42(5):93-97
[10] 陈春俊, 聂锡成, 唐猛. 车外空气压力作用下的CRH_2型动车组车内空气压力传递函数模型[J]. 中国铁道科学, 2013, 34(04):84-88
[11] 张红岭, 洪斌, 桂垣, 等. 基于参数自适应模糊PID中央空调控制系统的设计[J]. 科学技术创新, 2018(15):173-174