登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于磁导率方法的钢板裂纹检测

基于磁导率方法的钢板裂纹检测

352    2020-01-19

免费

全文售价

作者:许洋, 任尚坤, 张文君, 温俊鸽

作者单位:南昌航空大学 无损检测技术教育部重点实验室, 江西 南昌 330063


关键词:磁导率检测;物理模型;人工裂纹;信噪比


摘要:

为探究磁导率检测技术对宏观裂纹缺陷的检测能力,设计磁导率检测平台,建立磁导率检测裂纹的物理模型。以刻有人工裂纹的45#钢板为试验对象,研究不同的激励电压对检测信号的影响,分析传感器不同检测方向的信号特征,从正反两面对钢板裂纹进行试验研究。试验表明:磁导率检测方法完成对钢板表面和背面裂纹的检测;检测钢板背面时,该方法可以检测2.5 mm表面厚度下的裂纹,具有很高的信噪比。该研究成果可拓展磁导率检测技术的应用领域,为钢板裂纹的正背面检测提供一种新的方法。


Crack detection of steel plate based on permeability method
XU Yang, REN Shangkun, ZHANG Wenjun, WEN Junge
Key Laboratory of Nondestructive Testing of Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China
Abstract: In order to explore the permeability testing technology ability to detect macroscopic crack defects, a testing platform for permeability was designed, and a physical model of permeability testing crack have been built. Then use the testing platform to detect 45# which contain artificial cracks from front-side and back-sides of steel plate, and the relationship between detection signal and the excitation voltage amplitude was studied. At same time explored the signal characteristics of different detection directions of sensors. The study shows that the permeability testing method can detect the front-side and back-sides crack of the steel plate. When detecting the back-sides of the steel plate, the crack at the surface thickness of 2.5 mm can be detected, with a high signal-to-noise ratio. The research results expand the application field of permeability detection technology and provide a new method for the front-side and back-sides detection of steel plate cracks.
Keywords: permeability testing;physical model;artificial crack;signal-to-noise ratio
2020, 46(1):34-38,70  收稿日期: 2019-07-23;收到修改稿日期: 2019-08-27
基金项目: 国家自然科学基金资助项目(51865039)
作者简介: 许洋(1995-),男,安徽池州市人,硕士研究生,专业方向为电磁无损检测
参考文献
[1] 吴承建, 陈国良, 强文江, 等. 金属材料学[M]. 北京:冶金工业出版社, 2009.
[2] 熊二刚, 王社良. 铁磁材料磁通量变化与应力关系的磁力学模型[J]. 广西大学学报, 2009, 34(5):599-602
[3] 王社良. 铁磁材料相对磁导率变化与应力关系的磁力学模型[J]. 西安科技大学学报, 2005, 25(3):288-291
[4] 王威, 王社良. 应力对Q235钢磁滞回线影响的试验研究[J]. 工业建筑, 2005, 35:314-317
[5] 任尚坤, 徐振瀚. 铁磁试件应变损伤微结构蜕变的灵敏微分磁导率评价[J]. 航空学报, 2014, 35(5):1452-1458
[6] 任尚坤, 郭峰, 徐震撼. 20#钢构件应力疲劳检测的新技术及试验研究[J]. 仪器仪表学报, 2014, 35(5):1155-1160
[7] 陈伟民, 姜建山, 章鹏, 等. 钢缆索索力磁性传感理论模型与实验研究[J]. 仪器仪表学报, 2010, 31(4):794-799
[8] 吴德会, 李雪松, 黄一民, 等. 利用局部磁滞回线特性的无损检测新方法[J]. 仪器仪表学报, 2015, 36(10):2207-2214
[9] 吴德会, 刘志天, 王晓红, 等. 基于微分磁导率的铁磁性材料无损检测新方法[J]. 仪器仪表学报, 2017, 38(6):1491-1497
[10] TOMÁŠ I, VÉRTESY G, KOBAYASHI S, et al. Low-carbon steel samples deformed by cold rolling-analysis by the magnetic adaptive testing[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(17):2670-2676
[11] TOMÁŠ I, VÉRTESY G, KADLECOVÁ J. Influence of rate of change of magnetization processes on sensitivity of magnetic adaptive testing[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(8):1019-1024
[12] VÉRTESY G, UCHIMOTO T, TOMÁŠ I, et al. Temperature dependence of magnetic descriptors of magnetic adaptive testing[J]. IEEE Transactions on Magnetics, 2010, 46(2):509-512
[13] KTENA A, DAVINO D, VISONE C, et al. Stress dependent vector magnetic properties in electrical steel[J]. Physica B:Condensed Matter, 2014, 435:25-27
[14] LIU J, WILSON J, STRANGWOOD M, et al. Magnetic characterisation of microstructural feature distribution in P9 and T22 steels by major and minor BH loop measurements[J]. Journal of Magnetism and Magnetic Materials, 2016, 401(3):579-592
[15] VÉRTESY G, TOMÁŠ I, UCHIMOTO T, et al. Nondestructive investigation of wall in layered ferromagnetic material by magnetic adaptive testing[J]. NDT & E International, 2012, 41(4):51-55
[16] GABI Y, WOLTER B, GERBERSHAGEN A, et al. FEM Simulations of incremental permeability signals of a multi-layer stell with consideration of the hysteretic behavior of each layer[J]. IEEE Transactions on Magnetics, 2014, 50(4):1-4
[17] 姜昆良, 刘先松, 王超. 低损耗铁粉芯的制备与磁性研究[J]. 功能材料, 2012, 43(16):2153-2155