您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>耦合太阳能辅热的AA-CAES系统储热特性分析及优化

耦合太阳能辅热的AA-CAES系统储热特性分析及优化

2571    2019-11-28

免费

全文售价

作者:张营1,2, 张伟江1,2, 李晓光1,2

作者单位:1. 国网河北能源技术服务有限公司, 河北 石家庄 050021;
2. 国网河北省电力有限公司电力科学研究院, 河北 石家庄 050021


关键词:电网安全稳定性;先进绝热压缩空气储能;太阳能辅热;㶲效率;㶲流密度


摘要:

储热对耦合太阳能辅热的先进绝热压缩空气储能系统有重要影响。为研究系统热力性能随储热特性的变化规律并获得系统最佳热力性能,采用仿真计算的方法,分析系统热力性能随三类换热器效能的变化,并开展多目标优化。结果表明:当第一类换热器效能从0.7增加到0.94时,㶲效率存在最高值为54.85%,而㶲流密度增大6.54%;第二类和第三类换热器效能从0.7增加到0.94时,系统热力性能的变化趋势相同。其中,㶲效率均存在最高值,分别为50.90%和50.98%,㶲流密度也均存在最大值,分别为8.77×106 J/m3和8.78×106 J/m3。可以看出,㶲效率随储热特性的变化规律相同,而㶲流密度的变化规律不同;系统的最优㶲效率和㶲流密度分别为55.729%和9.432×106 J/m3


Analysis and optimization of thermal storage characteristics of AA-CAES system coupled with solar heating
ZHANG Ying1,2, ZHANG Weijiang1,2, LI Xiaoguang1,2
1. State Grid Hebei Energy Technology Service Co.,Ltd., Shijiazhuang 050021, China;
2. Electric Power Research Institute,State Grid Hebei Electric Power Co.,Ltd., Shijiazhuang 050021, China
Abstract: Thermal storage plays an important role in advanced adiabatic compressed air energy storage system coupled with solar heating. To investigate the variation of system's thermodynamic performance with thermal storage characteristics and get system's optimal performance, this paper analyzes the variations of thermodynamic performance with three heat exchanger effectiveness and conducts multi-objective optimization by adopting simulation calculation method. The results show that when first heat exchanger effectiveness increases from 0.7 to 0.94, exergy efficiency exists the highest value, 54.85%, but exergy density augments 6.54%. As second and third heat exchanger effectiveness increase from 0.7 to 0.94, the variation tendencies of thermodynamic performance are the same. Meanwhile, exergy efficiencies exist the highest values, which are respectively 50.90% and 50.98%. Exergy densities have the largest values, which are separately 8.77×106 and 8.78×106 J/m3. It can be seen that the variation of exergy efficiency with thermal storage characteristics is the same, but it is different for exergy density. The optimal exergy efficiency and exergy density of system are respectively 55.729% and 9.432×106 J/m3.
Keywords: grid safety and stability;advanced adiabatic compressed air energy storage;solar heating;exergy efficiency;exergy density
2019, 45(11):155-160  收稿日期: 2018-08-10;收到修改稿日期: 2018-09-08
基金项目: 河北省自然科学基金项目(E2018502059)
作者简介: 张营(1978-),山东淄博市人,高级工程师,硕士,主要从事汽轮机节能方面的技术研究工作
参考文献
[1] MAHLIA T, SAKTISAHDAN T, JANNIFAR A, et al. A review of available methods and development on energy storage:technology update[J]. Renewable and Sustainable Energy Reviews, 2014, 33:532-545
[2] FOLEY A, DIAZ L. Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio[J]. Energy, 2013, 57:85-94
[3] JUBEH N, NAJJAR Y. Green solution for power generation bu adoption of adiabatic CAES system[J]. Applied Thermal Engineering, 2012, 44:85-89
[4] 韩中合, 周权, 王营营, 等. 先进绝热压缩空气储能(AA-CAES)系统一种结构优化方案[J]. 太阳能学报, 2016, 37(3):629-635
[5] 韩中合, 庞永超, 刘士名. 基于变效率压气机的CAES系统性能分析[J]. 太阳能学报, 2017, 38(5):1291-1298
[6] 韩中合, 庞永超. AA-CAES系统储能过程运行策略分析[J]. 太阳能学报, 2018, 39(3):697-703
[7] ZHANG Y, YANG K, LI X, et al. The thermodynamic effect of air storage chamber model on advanced adiabatic compressed air energy storage system[J]. Renewable Energy, 2013, 57:469-478
[8] CHEN J, LIU W, JIANG D, et al. Preliminary investigation on the feasibility of a clean CAES system coupled with wind and solar energy in China[J]. Energy, 2017, 127:462-478
[9] 李庆. 绝热压缩空气蓄能与太阳能互补系统性能分析[D].北京:华北电力大学, 2016.
[10] WANG X, YANG C, HUANG M, et al. Off-design performances of gas turbine-based CCHP combined with solar and compressed air energy storage with organic Rankine cycle[J]. Energy Conversion and Management, 2018, 156:626-638
[11] WANG X, YANG C, HUANG M, et al. Multi-objective optimization of a gas turbine-based CCHP combined with solar and compressed air energy storage system[J]. Energy Conversion and Management, 2018, 164:93-101
[12] YANG K, ZHANG Y, LI X, et al. Theoretical evaluation on the impact of heat exchanger in advanced adiabatic compressed air energy storage system[J]. Energy Conversion and Management, 2014, 86:1031-1044
[13] 李瑞, 彭浩, 凌祥, 等. 压缩空气填充床储能系统性能研究[J]. 太阳能学报, 2016, 37(9):2356-2362
[14] ZHANG Y, YANG K, LI X, et al. The thermodynamic effect of thermal energy storage on compressed air energy storage system[J]. Renewable Energy, 2013, 50:227-235
[15] TESSIER M, FLOROS M, BOUZIDI L, et al. Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials[J]. Energy, 2016, 106:528-534