登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>偏置磁场强度对交叉线圈式扭转导波换能器换能效率的影响

偏置磁场强度对交叉线圈式扭转导波换能器换能效率的影响

177    2019-10-29

¥0.50

全文售价

作者:刘志伟, 徐江, 陈广

作者单位:华中科技大学机械科学与工程学院, 湖北 武汉 430074


关键词:交叉线圈;扭转模态;磁致伸缩导波换能器;偏置磁场强度;换能效率


摘要:

交叉线圈式带状磁致伸缩扭转导波换能器偏置磁场强度直接影响换能器换能效率,为获得较佳的检测效果,需要研究偏置磁场强度对该换能器换能效率的影响。首先,从磁致伸缩效应出发,分析交叉线圈式带状磁致伸缩扭转导波换能器的工作原理。其次,在模态验证实验的基础上,分别对激励和接收换能器换能过程中偏置磁场的作用进行研究。实验结果表明随着偏置磁场强度的增大激励端和接收端换能器换能效率均先增大后减小。最后进行缺陷检测实验,当激励端和接收端均选择最佳换能区域时,对比模态验证实验,缺陷信号明显增大。该研究结果可为换能器的现场应用提供技术支持。


Effect of bias magnetic field strength on coupling efficiency of cross-coil torsional guided wave transducer
LIU Zhiwei, XU Jiang, CHEN Guang
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract: Since the bias magnetic field strength directly affects the magnetostrictive patch torsion guided wave transducers' coupling efficiency, in order to obtain better detection results, it is necessary to study the effect of the bias magnetic field strength on the coupling efficiency. Firstly, according to the magnetostrictive effect, the principle of the magnetostrictive patch torsion guided wave transducers of crossed coils is analyzed. Secondly, based on the modal verification experiment, the effects of bias magnetic field in the process of excitation and receiving transducer transduction are studied. The experimental results show that the coupling efficiency of the excitation and receiver transducers increases first and then decreases with the increase of the bias magnetic field strength. Finally, the defect detection experiment is carried out. When the optimal transducing area is selected for the transmitter and the receiver the defect signal increases obviously compared with the modal validation experiment. The research results can support the field application of the transducers.
Keywords: cross coil;torsional mode;magnetostrictive guided wave transducer;bias magnetic field strength;coupling efficiency
2019, 45(10):139-144  收稿日期: 2018-12-25;收到修改稿日期: 2019-02-25
基金项目: 国家重点研发计划课题资助项目(2016YFC0801904);国家自然科学基金资助项目(51575213)
作者简介: 刘志伟(1994-),男,河北邢台市人,硕士研究生,专业方向为机械工程
参考文献
[1] 梁永宽, 杨馥铭, 尹哲祺, 等. 油气管道事故统计与风险分析[J]. 油气储运, 2017, 36(4):472-476
[2] 黄松岭, 王哲, 王珅, 等. 管道电磁超声导波技术及其应用研究进展[J]. 仪器仪表学报, 2018, 39(3):1-12
[3] 王伟, 游鹏辉, 钟力强, 等. 基于T(0, 1)扭转波的管道纵向裂纹定位方法[J]. 中国测试, 2016, 42(6):139-144
[4] 何存富, 郑明方, 吕炎, 等. 超声导波检测技术的发展、应用与挑战[J]. 仪器仪表学报, 2016, 37(8):1713-1735
[5] 朱龙翔, 王悦民, 孙丰瑞. 磁致伸缩扭转导波管道缺陷检测数值模拟和实验研究[J]. 中南大学学报(自然科学版), 2014, 45(9):3001-3007
[6] 李赢, 阎石, 刘尚波. 基于超声导波埋地层状管道结构健康监测[J]. 土木工程与管理学报, 2018, 35(5):98-103
[7] HERDOVICS B, CEGLA F B. Structural health monitoring using torsional guided wave electromagnetic acoustic transducers[J]. Structural health monitoring, 2018, 17(1):24-38
[8] 汪玉刚, 王丽, 武新军. 电磁超声扭转波检测钢管缺陷的实验研究[J]. 传感器与微系统, 2014, 33(2):23-25
[9] 朱龙翔, 王悦民, 孙丰瑞. 非铁磁性管道磁致伸缩式扭转导波检测[J]. 海军工程大学学报, 2013, 25(2):30-34
[10] 蔡国宁. 超声导波在液化气管道检测中的应用[J]. 无损检测, 2005, 27(3):117-120
[11] KIM Y Y, KWON Y E. Review of magnetostrictive patch transducers and applications in ultrasonic nondestructive testing of waveguides[J]. Ultrasonics, 2015, 62:3-19
[12] KIM Y G, MOON H S, PARK K J, et al. Generating and detecting torsional guided waves using magnetostrictive sensors of crossed coils[J]. NDT & E International, 2011, 44(2):145-151
[13] Standard on magnetostrictive materials:Piezomagnetic nomenclature:IEEE 319-1990[S]. 1990.
[14] MURAYAMA R. Driving mechanism on magnetostrictive type electromagnetic acoustic transducer for symmetrical vertical-mode Lamb wave and for shear horizontal-mode plate wave[J]. Ultrasonics, 1996, 34(7):729-736
[15] KIM Y Y, SEUNG H M. Generation of omni-directional shear-horizontal waves in a ferromagnetic plate by a magnetostrictive patch transducer[J]. NDT & E International, 2016, 80:6-14
[16] KIM H J, JU S L, KIM H W, et al. Numerical simulation of guided waves using equivalent source model of magnetostrictive patch transducers[J]. Smart Materials & Structures, 2015, 24(1):15006-15023
[17] SECO F, JIMENEZ A R. Modelling the generation and propagation of ultrasonic signals in cylindrical waveguides[M]. Intech Open Access Publisher, 2012, 1:1-28.
[18] CONG M, WU X, QIAN C. A longitudinal mode electromagnetic acoustic transducer (EMAT) based on a permanent magnet chain for pipe inspection[J]. Sensors, 2016, 16(5):740
[19] 郑国军. 磁致伸缩导波管道无损检测数字信号处理关键技术[D]. 杭州:浙江大学, 2013.
[20] 徐江, 陈广, 刘志伟, 等. 非接触式磁致伸缩扭转导波传感器研制[J]. 华中科技大学学报(自然科学版), 2019, 47(1):13-17