您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>烟碱-苹果酸盐制备及晶体结构理论分析

烟碱-苹果酸盐制备及晶体结构理论分析

2847    2019-10-29

免费

全文售价

作者:李志强1, 黄江华1, 雷萍1, 郑绪东1, 韩敬美1, 尚善斋1, 王程娅1, 龚为民1, 汤建国1, 李晖2

作者单位:1. 云南中烟工业有限责任公司, 云南 昆明 650231;
2. 四川大学化学工程学院, 四川 成都 610065


关键词:烟碱;苹果酸;共晶;晶体结构;能量框架


摘要:

以探究烟碱-苹果酸盐晶体结构为目的,采用溶液反应法制备获得烟碱-苹果酸盐,溶液重结晶得到烟碱-苹果酸盐的单晶体。通过单晶X射线衍射分析法解析得到烟碱-苹果酸盐由一个加氢的烟碱阳离子(二价)与一个苹果酸阴离子(二价)组成,其化学计量式为C14H20N2O5,其中烟碱与苹果酸分子以离子键和氢键结合。晶胞参数为:正交晶系,P212121空间群,a=7.629 3(16) Å,b=8.160 4(12) Å,c=24.030(4) Å,α=β=γ=90.00°。相互作用能分析结果表明:在以烟碱为中心,3.8 Å距离范围内,烟碱分子与周围分子存在12种不同的相互作用能。其中,烟碱分子与最近的苹果酸分子由于形成N2-H2…O2氢键而具有最大的总相互作用能(–23.4 kJ/mol)。能量框架研究结果表明:烟碱-苹果酸盐总体能量框架主要由形如正方体的能量框架单体组合而成,在正方体能量框架单体内部有较小的相互作用能(圆柱体半径较小)连接。该研究制备得到烟碱-苹果酸盐及其单晶体,通过实验与理论分析相结合的方式,系统分析烟碱-苹果酸盐的晶体结构,探究共晶中烟碱与苹果酸分子间的相互作用关系。


Preparation and crystal structure theoretical analysis of nicotine-malate
LI Zhiqiang1, HUANG Jianghua1, LEI Ping1, ZHENG Xudong1, HAN Jingmei1, SHANG Shanzhai1, WANG Chengya1, GONG Weimin1, TANG Jianguo1, LI Hui2
1. China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China;
2. School of Chemical Engineering, Sichuan University, Chengdu 610065, China
Abstract: The purpose of this study is to analyze the structures of nicotine-malate and its monocrystal which have been prepared by antisolvent diffusion and solution recrystallization, respectively. The result of single crystal X-ray diffraction analysis is that the nicotine-malate structure is composed of a hydrogenated nicotinic cation (divalent) and a malic acid anion (divalent). Its stoichiometric formula is C14H20N2O5, and nicotine binds to malic acid molecules by ionic bond and hydrogen bond. Nicotine-malate structure belongs to orthorhombic crystal system with space group P212121, and the cell parameters are a=7.629 3(16) Å, b=8.160 4(12) Å, c=24.030(4) Å, α=β=γ=90.00°. The analysis of interaction energy shows that there are twelve different interaction energies between nicotine and surrounding molecules in the range of 3.8 Å with nicotine as the center. Among them, N2-H2…O2 hydrogen bonds formed by nicotine molecules and recent malic acid molecules have the maximum total interaction energy (-23.4 kJ/mol). The research results of energy framework show that the overall energy frame of nicotine-malic acid crystal is mainly composed of energy frame monomers, which are shaped like cubes. Inside the energy frame monomers, there is small interaction energy (cylinders with small radius) connection. In this study, the nicotine-malate and its monocrystal were prepared, and the structure of nicotine-malate was systematically analyzed by combining experimental and theoretical analysis, and the interaction between nicotine and malic acid in eutectic was explored.
Keywords: nicotine;malic acid;co-crystal;crystal structure;energy framework
2019, 45(10):53-61  收稿日期: 2019-06-19;收到修改稿日期: 2019-08-23
基金项目: 云南省基础研究-青年基金项目(2017FD238);云南中烟科技计划重大专项(2018XY01)
作者简介: 李志强(1986-),男,云南楚雄州人,工程师,硕士,主要从事新型烟草制品研究
参考文献
[1] 戴冕. 烟草植物体中的烟碱(Nicotine)积累(续)[J]. 中国烟草科学, 1981(2):43-45
[2] 吴川彦. 烟碱测定方法的研究[J]. 华西药学杂志, 1998(3):198-198
[3] SMITH G, WERMUTH U D. Crystal structures and hydrogen bonding in the proton-transfer salts of nicotine with 3,5-dinitrosalicylic acid and 5-sulfosalicylic acid[J]. Acta Crystallographica Section E Structure Reports Online, 2014, 70(11):430-434
[4] 宋朝鹏, 全琳, 武圣江, 等. 烘烤过程中烟叶苹果酸含量及相关代谢酶活性的变化[J]. 西北农林科技大学学报(自然科学版), 2011, 39(7):49-54
[5] 徐发华, 朱凯, 荆永锋. 不同时期施用苹果酸对烟叶中非挥发性有机酸的影响[J]. 西南农业学报, 2008, 21(1):66-70
[6] 张晓明, 卢晓娥, 李静. 药物共晶制备及表征方法研究进展[J]. 广东化工, 2013(7):79-80
[7] XIAO Y, ZHOU R S, et al. Novel Metal-organic Framework Compound Pb (C5H4NCOO) 2 Showing One-dimensional Channel Defined as Four Leads and Four Nicotinic Acids[J]. 高等学校化学研究(英文版), 2009, 25(3):279-281
[8] MACKENZIE C F, SPACKMAN P R, JAYATILAKA D, et al. CrystalExplorer model energies and energy frameworks:extension to metal coordination compounds, organic salts, solvates and open-shell systems[J]. IUCrJ, 2017, 4(5):575-587
[9] KAJAMUHIDEEN M S, SETHURAMAN K, RAMAMURTHI K, et al. Crystal growth, physical properties and computational insights of semi-organic non-linear optical crystal diphenylguanidinium perchlorate grown by conventional solvent evaporation method[J]. Journal of Crystal Growth, 2017, 483:16-25
[10] TURNER M J, THOMAS S P, SHI M W, et al. Energy frameworks:insights into interaction anisotropy and the mechanical properties of molecular crystals[J]. Chem Commun, 2015, 51(18):3735-3738
[11] TURNER M J, GRABOWSKY S, JAYATILAKA D, et al. Accurate and Efficient Model Energies for Exploring Intermolecular Interactions in Molecular Crystals[J]. J Phys Chem Lett, 2014, 5(24):4249-4255
[12] ARESTA A, Palmisano F, Zambonin C G. Simultaneous determination of caffeine, theobromine, theophylline, paraxanthine and nicotine in human milk by liquid chromatography with diode array UV detection[J]. Food Chemistry, 2005, 93(1):177-181
[13] 张慧丽, 夏燚, 洪治, 等. 吡拉西坦和3-羟基苯甲酸药物共晶体及其形成过程的光谱特性分析[J]. 光谱学与光谱分析, 2015, 35(7):1854-1859
[14] FISCHER G, HOLL G, KLAPÖTKE T M, et al. A study on the thermal decomposition behavior of derivatives of 1,5-diamino-1 H-tetrazole (DAT):A new family of energetic heterocyclic-based salts[J]. Thermochimica Acta, 2005, 437(1):168-178
[15] 杨彩琴, 王静, 张振伟. 双苯氟嗪盐酸盐和苯甲酸的共晶制备和谱学分析[J]. 光谱学与光谱分析, 2011, 31(9):2476-2479
[16] DU Q, XIONG X, SUO Z, et al. Investigation of the solid forms of deferasirox:Solvate, co-crystal, and amorphous form[J]. Rsc Advances, 2017, 7(68):43151-43160
[17] TANG P, SUN Q, ZHAO L, et al. Mesalazine/hydroxypropyl-β-cyclodextrin/chitosan nanoparticles with sustained release and enhanced anti-inflammation activity[J]. Carbohydrate Polymers, 2018, 198:418-425
[18] DONG M, WANG YW, ZHANG AJ, et al. Colorimetric and Fluorescent Chemosensors for the Detection of 2,4,6-Trinitrophenol and Investigation of their Co-Crystal Structures[J]. Chemistry-An Asian Journal, 2013, 8(6):1321-1330