您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>INS辅助PLL载波相位跟踪环路高动态测试

INS辅助PLL载波相位跟踪环路高动态测试

2654    2019-10-29

免费

全文售价

作者:班亚龙

作者单位:中国电子科技集团公司第十研究所, 四川 成都 650036


关键词:INS辅助PLL;载波相位;高动态;性能测试


摘要:

GNSS精密定位技术依赖于高精度的载波相位观测信息,而当载体高动态运动时,GNSS接收机的PLL跟踪环路由于承受较大的动态应力可能无法保持对导航卫星信号载波相位的稳定跟踪。针对这一问题,该文设计INS辅助的PLL跟踪环路结构,并且系统地设计基于典型高动态圆周运动的仿真(径向加速度50 g)与实测测试(径向加速度5.2 g)方法。测试结果表明:设计的INS辅助GNSS PLL跟踪环路结构,可以实现高动态条件下对卫星信号载波相位的稳定跟踪以及连续稳定的导航定位解算,且相比于普通环路,可以通过进一步压缩环路带宽和延长相干积分时间,获得更高精度的载波相位观测信息和多普勒估计信息。


Tests and analysis of PLL with INS aiding under high dynamics
BAN Yalong
CETC-10, Chengdu 650036, China
Abstract: Carrier phase observation is the key to GNSS precise positioning. However, due to the high dynamics, the PLL tracking loop of GNSS receiver can lock the of the carrier phase of satellite signal stably. To solve this problem, this paper designed the tracking loop structure of INS aided PLL and systematically designed the simulation (e.g. radial acceleration 50 g) and real (e.g. radial acceleration 5.2 g) tests based on the typical scene of high dynamic circular motion. The results show that the proposed INS-aided PLLs can achieve stable tracking of satellite signal carrier phase and positioning solution under high dynamics. Besides, with the INS aiding, the PLLs can output higher precision carrier phase and Doppler observations by reducing the tracking loop bandwidth and extending the coherent integration time.
Keywords: INS aided PLL;carrier phase;high dynamics;performance tests
2019, 45(10):45-52  收稿日期: 2018-08-11;收到修改稿日期: 2018-12-15
基金项目:
作者简介: 班亚龙(1987-),男,河南新乡市人,工程师,博士,研究方向为卫星导航与组合导航
参考文献
[1] BOCK Y,PARAWIRODIRDJO L. Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network[J]. Geophysical Research Letters, 2004, 31(6):L06604
[2] POWNELL M, NIELSON J, MADSEN J. Use of GPS for long range precision navigation for weapon delivery[C]//Proceedings of the ION GNSS. Long Beach,2005:13-16.
[3] LUETTEL T, HIMMELSBACH M, WUENSCHE H J. Autonomous ground vehicles-Concepts and a path to the future[J]. Proceedings of the IEEE., 2012, 100(special centennial issue):1831-1839
[4] PUENTE I, GONZALEZ J H, MARTINEZ S J, et al. Review of mobile mapping and surveying technologies[J]. Measurement, 2127, 46(7):2127-2145
[5] 张鹏辉, 张提升, 章红平, 等. GNSS接收机测量强震地震波的精度分析[J]. 大地测量与地球动力学, 2016, 36(3):278-282
[6] 刘蘅嵘. GNSS/INS深组合强震仪关键技术研究与验证[D]. 武汉:武汉大学, 2018.
[7] 谢钢. GPS原理与接收机设计[M]. 北京:电子工业出版社, 2009:266-292.
[8] ZHANG T S, ZHANG H P, BAN Y L, et al. Hardware implementation of a real-time MEMS IMU/GNSS deeply-coupled system[J]. IEICE Transaction on Communications, 2013, E96-B(11):2933-2942
[9] 牛小骥, 班亚龙, 张提升, 等. GNSS/INS深组合技术研究进展与展望[J]. 航空学报, 2016, 37(10):2895-2908
[10] ALBAN S, AKOS D M, ROCK S M. Performance analysis and architectures for INS-aided GPS tracking loops[C]//Proceedings of the Institute of Navigation National Technical Meeting. Anaheim, 2003:22-24.
[11] SOLOVIEV A, GRASS F V. Utilizing multipath reflections in deeply integrated GPS/INS architecture for navigation in urban environments[C]//IEEE/ION 2008 Position, Location and Navigation Symposium. IEEE, 2008:383-393.
[12] FERNANDEZ-PRADES C, CLOSAS P, VILA-VALLS J. Nonlinear filtering for ultra-tight GNSS/INS integration[C]//2010 IEEE International Conference on Communications. IEEE,2010:1-5.
[13] 于海亮. 基于INS辅助的GPS接收机捕获和跟踪技术研究[D]. 长沙:国防科学技术大学, 2007.
[14] 王朋辉. 高动态GPS/INS组合导航系统研究[D]. 南京:南京航空航天大学, 2010.
[15] 赵洪亮. GPS/INS超紧组合导航系统关键技术改进[D]. 郑州:郑州大学, 2017.
[16] 连文浩, 杨小龙, 朱磊, 等. EKF在SINS/GNSS深组合导航中的应用[J]. 现代防御技术, 2017, 45(5):53-62
[17] 戴卿, 常允艳. BDS/INS深组合导航性能分析[J]. 大地测量与地球动力学, 2017, 37(2):209-214
[18] NIU X J, BAN Y L, ZHANG Q, et al. Quantitative analysis to the impacts of IMU quality in GPS/INS deep integration[J]. Micromachines, 2015, 6(8):1082-1099
[19] BAN Y L, NIU X J, ZHANG T S, et al. Modeling and quantitative analysis of GNSS/INS deep integration tracking loops in high dynamics[J]. Micromachines, 2017, 8(9):272-291
[20] HINEDI S, STATMAN J I. High-dynamic GPS tracking final report[R]. 1989.
[21] 张提升, 章红平, 严昆仑, 等. 自带中频记录回放功能的GNSS接收机系统:CN102590827A[P]. 2012-07-18.
[22] 刘蘅嵘, 班亚龙, 张提升, 等. 旋转平台绝对运动信息测量系统[J]. 中国测试, 2017, 43(1):64-68