登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于自适应滤波的薄层厚度超声测量方法

基于自适应滤波的薄层厚度超声测量方法

191    2019-10-29

¥0.00

全文售价

作者:黄巧盛, 周世圆, 张翰明, 姚鹏娇, 程垄

作者单位:北京理工大学 检测与控制研究所, 北京 100081


关键词:薄层测厚;混叠信号分离;自适应滤波;RLS算法;超声脉冲回波法


摘要:

针对应用超声脉冲回波法测量三层结构中的硅橡胶薄层厚度时回波混叠的问题,提出一种基于RLS(recursive least square)自适应滤波的解决方法。该方法将硅橡胶层下界面回波发生混叠的信号作为输入信号,将无硅橡层时的回波信号作为期望信号,通过RLS自适应滤波算法的处理提取出相互分离的有效下界面回波信号,实现硅橡胶薄层的测厚。研究不同滤波器阶数和遗忘因子对信号分离及测厚精度的影响,以输出信号的信噪比为指标选择最优的滤波参数。结果表明:该方法能够有效分离出发生混叠的硅橡胶薄层界下界面回波,能够测量0.15,0.17,0.19,0.21 mm 4种厚度的硅橡胶薄层,对回波部分混叠和完全混叠两种情况均有良好的适用性。


Ultrasonic measurement method for thin layer thickness based on adaptive filtering
HUANG Qiaosheng, ZHOU Shiyuan, ZHANG Hanming, YAO Pengjiao, CHENG Long
Institute of Testing and Control, Beijing Institute of Technology, Beijing 100081, China
Abstract: To solve the problem that the thickness of the silicone rubber layer in a three-layer structure can't be measured due to echo aliasing, an ultrasonic measurement method based on RLS adaptive filtering has been proposed. In this method, the aliasing signal from the bottom interface of the silicone rubber layer was input as the original signal, and the echo signal without silicon rubber layer was input as the desired signal. The effective signal of the bottom interface of the silicone rubber layer was extracted by adopting RLS adaptive filtering, and then the thickness of the thin silicone rubber layer was measured. The effects of the filter order and the forgetting factor on signal separation were studied, and then the optimal filter parameters were determined according to the signal-to-noise ratio of the output signal. The results show that this method can effectively separate the aliasing echoes of the thin silicone rubber layer and that thin silicone rubber layers with thicknesses of 0.15, 0.17, 0.19, 0.21 mm can be measured, and that it is applicable for both partially mixed signals and completely mixed signals.
Keywords: thin layer thickness measurement;aliasing signal separation;adaptive filtering;RLS algorithm;ultrasonic pulse echo method
2019, 45(10):34-39  收稿日期: 2019-02-28;收到修改稿日期: 2019-03-29
基金项目:
作者简介: 黄巧盛(1993-),男,广西钦州市人,硕士研究生,专业方向为超声无损检测
参考文献
[1] MAEV R G, SHAO H, MAEVA E Y. Thickness measurement of a curved multilayered polymer system by using an ultrasonic pulseecho method[J]. Materials Characterization, 1998, 41(2-3):97-105
[2] MULLER H, SC'HALLER N, EVER T. Ultrasonic determinaion of thickness of masticatory mucosa:a methodologic study[J]. Oral Surgery, Oral Medicine,Oral Pathology, Oral Radiology and Endodontology, 1999, 88(2):248-253
[3] HAINES N F, BELL J C, MCLNLYRE P J. The application of broadband ultrasonic spectroscopy to the study of layered media[J]. The Journal of the Acoustical Society of America, 1978, 65(6):1645-1651
[4] 李喜孟, 林莉, 聂颖. 薄层结构超声信号的小波分析[J]. 无损探伤, 2006, 30(4):53-56
[5] 陈秀明, 林莉, 李喜孟, 等. 超声干涉法薄层厚度测量声阻抗匹配判据及其应用[J]. 航空材料学报, 2009, 29(1):87-91
[6] 张伟, 马志远, 赫丽华, 等. 基于声压反射系数幅度谱匹配分析的薄层厚度和超声纵波声速双参数反演[J]. 材料工程, 2016, 44(10):74-79
[7] 马国栋, 阎树田, 贺成柱, 等. 基于LMS算法与RLS算法自适应滤波及仿真分析[J]. 电子设计工程, 2014, 22(6):43-49
[8] 西蒙·赫金. 自适应滤波器原理[M]. 北京:电子工业出版社, 2003:344-347.
[9] 龚耀寰.自适应滤波-时域自适应滤波和智能天线[M]. 北京:电子工业出版社, 2003:92-95.
[10] 刘梅, 金龙. 基于自适应RLS算法的系统辨识应用[J]. 中山大学研究生学刊, 2013, 34(1):80-89
[11] 林川, 冯全源. 应用于自适应格型RLS滤波器的变阶数算法[J]. 信号处理, 2010, 26(2):298-302
[12] 陈涵, 刘会金, 李大路, 等. 可变遗忘因子递推最小二乘法对时变参数测量[J]. 高电压技术, 2008, 34(7):1474-1477
[13] 柳建楠, 刘文峰, 王伯雄, 等. 应用于超声测距的小波变换滤波算法[J]. 清华大学学报(自然科学版), 2012, 52(7):951-955