您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>光纤光栅肘关节角度测量方法

光纤光栅肘关节角度测量方法

2935    2019-10-29

免费

全文售价

作者:马晓源, 路长厚, 李学勇, 吕宇翔, 谷雨橦

作者单位:山东大学机械工程学院, 山东 济南 250061


关键词:关节角度;光纤布拉格光栅;分布式测量;曲线重构;可视化


摘要:

为解决现有关节角度测量装置的不足,提出一种基于多光纤布拉格光栅(fiber Bragg grating, FBG)的关节角度测量方法。该方法将多光纤光栅固定在套袖上,套袖戴在肘关节上,辅以自主设计的基于LabVIEW关节角度计算及数据处理的程序和可视化界面,实现对肘关节角度实时测量并输出可视化数据。该套袖具有柔性化程度高、不受电磁信号干扰、测量效率高、结构简单的优点。对所制作套袖进行测量实验,实验结果表明,该测量方法的误差约为2.88%,重复性误差在4%以下,具有实际的应用价值。


Measuring method of elbow joint angle based on fiber Bragg grating
MA Xiaoyuan, LU Changhou, LI Xueyong, LÜ Yuxiang, GU Yutong
School of Mechanical Engineering, Shandong University, Jinan 250061, China
Abstract: In order to solve the shortcomings of the existing joint angle measuring device, a joint angle measuring method based on the principle of fiber grating wavelength division multiplexing is proposed. The method that fixed the multi-fiber Bragg gratings on the sleeve and the sleeve is worn on the elbow joint, supplemented by the LabVIEW joint angle calculation and data processing program, realizing real-time measurement and output visualization data of the joint angle. The sleeve has the advantages of high degree of flexibility, no influenced from electromagnetic signals, high measurement efficiency, and simple structure. Experiments were carried out on the sleeve produced. And the results show that the measurement error of the measuring device is about 2.88%, and the repeatability error is below 4%, which has practical application value.
Keywords: joint angle;FBG;distributed measurement;curve reconstruction;visualization
2019, 45(10):28-33  收稿日期: 2019-01-09;收到修改稿日期: 2019-04-08
基金项目: 山东大学基本科研业务费专项资金(2016JC001)
作者简介: 马晓源(1994-),男,山东泰安市人,硕士研究生,专业方向为精密机械与仪器
参考文献
[1] OFLI F, CHAUDHRY R, KURILLO G, et al. Sequence of the most informative joints (SMIJ):A new representation for human skeletal action recognition[J]. Journal of Visual Communication and Image Representation, 2014, 25(1):24-38
[2] PARK Y L, RYU S C, BLACK R J, et al. Exoskeletal force-sensing end-effectors with embedded optical fiber-Bragg-grating Sensors[J]. IEEE Transactions on Robotics, 2010, 25(6):1319-1331
[3] FAVRE J, JOLLES B M, SIEGRIST O, et al. Quaternion-based fusion of gyroscopes and accelerometers to improve 3D angle measurement[J]. Electronics Letters, 2006, 42(11):612
[4] GABRIE L JR, BROSTOW J, HODGINS J K, et al. Automatic joint parameter estimation from magnetic motion capture data[EB/OL].[2017-04-01]. http:hdl.Handle.net/1853/3408.
[5] JANSEN B, DEKLERCK R. Context aware inactivity recognition for visual fall dection[C]//Pervasive Health Conference and Workshops, IEEE, 2006:1-4.
[6] MENGUC Y, PARK Y L, MARTINEZ-VILLALPANDO E, et al. Soft wearable motion sensing suit for lower limb biomechanics measurements[C]//IEEE International Conference on Robotics & Automation. IEEE, 2013.
[7] 张振海, 张小栋, 侯育军. 用于人体关节角度捕捉的光纤角度传感器的研究[J]. 科学技术与工程, 2012, 12(3):535-538
[8] 李敏, 何博, 徐光华, 等. 柔性可穿戴的腕关节运动角度传感器[J]. 西安交通大学学报, 2018, 58(12):32-35
[9] SILVA A S, CATARINO A, CORREIA M V, et al. Design and characterization of a wearable macro-bending fiber optic sensor for human joint angle determination[J]. Optical Engineering, 2013, 52(12):992-999
[10] 郭伟, 李新良, 宋昊. 表面粘贴光纤光栅传感器的应变传递分析[J]. 计测技术, 2011, 31(4):1-4