您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于干扰观测器的球形移动机器人直线运动控制

基于干扰观测器的球形移动机器人直线运动控制

2858    2019-09-29

免费

全文售价

作者:于涛1, 王益博1, 孙汉旭2, 赵伟3

作者单位:1. 辽宁工业大学机械工程与自动化学院, 辽宁 锦州 121001;
2. 北京邮电大学自动化学院, 北京 100876;
3. 北京印刷学院 信息工程学院, 北京 102600


关键词:球形机器人;直线运动;分层滑模控制;干扰观测器;双幂次趋近律


摘要:

针对受扰球形移动机器人的直线运动控制问题,提出一种基于滑模干扰观测器和双幂次趋近律的分层滑模控制方法。该控制方法利用滑模干扰观测器对未知扰动进行在线估计,并且采用基于滑模干扰观测器的分层滑模控制器实现被控机器人系统的连续鲁棒控制。首先设计被控系统的第一层和第二层滑动变量,然后基于第一层滑动变量定义系统的辅助滑动变量。基于所定义的辅助滑动变量设计滑模干扰观测器,然后基于所设计的滑模干扰观测器和第二层滑动变量,采用改进的双幂次趋近律设计分层滑模控制器。从理论上分析所设计的分层滑模控制器作用下闭环系统的稳定性,并通过仿真实验验证所提控制方法的有效性。


Linear motion control of a spherical mobile robot based on disturbance observer
YU Tao1, WANG Yibo1, SUN Hanxu2, ZHAO Wei3
1. College of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou 121001, China;
2. School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3. School of Information Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
Abstract: A hierarchical sliding mode control approach based on sliding mode disturbance observer and double power reaching law is proposed for controlling the linear motion of a disturbed spherical mobile robot. The proposed control approach uses sliding mode disturbance observers to estimate the unknown disturbances on-line, and adopts a hierarchical sliding mode controller based on the sliding mode disturbance observers to realize continuous robust control of the robotic system. The sliding variables of the first and second layers of the robotic system are designed, and the auxiliary sliding variables of the system are defined based on the first layer sliding variables. The sliding mode disturbance observers are derived based on the auxiliary sliding variables, and then based on the sliding mode disturbance observers and the second layer sliding variable the hierarchical sliding mode controller is designed by using an improved double power reaching law. The stability of the closed-loop system controlled by the hierarchical sliding mode controller is analyzed theoretically, and the effectiveness of the proposed control approach is verified by simulation tests.
Keywords: spherical robot;linear motion;hierarchical sliding mode control;disturbance observer;double power reaching law
2019, 45(9):123-129  收稿日期: 2018-10-10;收到修改稿日期: 2018-11-23
基金项目: 辽宁省自然科学基金指导计划项目(201602379);辽宁省教育厅科学技术研究一般项目(L2015241)
作者简介: 于涛(1980-),男,天津市人,讲师,博士,研究方向为机器人运动分析与控制、滑模控制理论与应用
参考文献
[1] ARMOUR R H, VINCENT J F V. Rolling in nature and robotics:a review[J]. Journal of Bionic Engineering, 2006, 3(4):195-208
[2] CROSSLEY V A. A literature review of the design of spherical rolling robots[R]. Pittsburgh, Carnegie Mellon University, 2006.
[3] CHASE D, PANDYA A. A review of active mechanical driving principles of spherical robots[J]. Robotics, 2012, 1(1):3-23
[4] WU F, VIBHUTE A, SOH G S, et al. A compact magnetic field-based obstacle detection and avoidance system for miniature spherical robots[J]. Sensors, 2017, 17(6):1-20
[5] HOGAN F R, FORBES J R, BARFOOT T D. Rolling stability of a power-generating tumbleweed rover[J]. Journal of Spacecraft and Rockets, 2015, 51(6):1895-1906
[6] HERNANDEZ J D, BARRIENTOS J, CERRO J D, et al. Moisture measurement in crops using spherical robots[J]. Industrial Robot:An International Journal, 2013, 40(1):59-66
[7] LI Y, YANG M, SUN H, et al. A novel amphibious spherical robot equipped with flywheel, pendulum, and propeller[J]. Journal of Intelligent and Robotic Systems, 2017, 2:1-17
[8] MICHAUD F, LAPLANTE J F, LAROUCHE H, et al. Autonomous spherical mobile robot for child-development studies[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2005, 35(4):1-10
[9] MADHUSHANI T W U, MAITHRIPALA D H S, BERG J M. Feedback regularization and geometric PID control for trajectory tracking of mechanical systems:hoop robots on an inclined plane[C]//American Control Conference, 2017.
[10] ZHAN Q, CHI X, XI X. Linear motion control of an underactuated spherical mobile robot[J]. Applied Mechanics and Materials, 2014, 644-650:351-355
[11] IVANOVA T B, PIVOVAROVA E N. Dynamics and control of a spherical robot with an axisymmetric pendulum actuator[J]. Physics, 2015, 9(3):507-520
[12] YE P, SUN H, QIU Z, et al. Design and motion control of a spherical robot with stereovision[C]//IEEE Conference on Industrial Electronics and Applications, 2016.
[13] YUE M, LIU B. Disturbance adaptive control for an underactuated spherical robot based on hierarchical sliding-mode technology[C]//Chinese Control Conference, 2012.
[14] 于涛, 孙汉旭, 赵伟, 等. 基于自适应分级滑模控制的球形机器人定位控制[J]. 中国测试, 2018, 44(5):97-102
[15] UTKIN V, GULDNER J, SHI J M. Sliding mode control in electro-mechanical systems[M]. Boca Raton:CRC, 2009:216.
[16] 梅红, 王勇. 快速收敛的机器人滑模变结构控制[J]. 信息与控制, 2009, 38(5):552-557
[17] 张合新, 范金锁, 孟飞, 等. 一种新型滑模控制双幂次趋近律[J]. 控制与决策, 2013, 28(2):289-293
[18] QIAN D, YI J. Hierarchical sliding mode control for under-actuated cranes:design, analysis and simulation[M]. Berlin:Springer-Verlag, 2016.