您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>热电偶传感器温控系统误差研究

热电偶传感器温控系统误差研究

2733    2019-09-29

免费

全文售价

作者:薛光辉, 柴敬轩

作者单位:中国矿业大学(北京), 北京 100083


关键词:热电偶;温控器;控温误差;冷端补偿;补偿导线


摘要:

热电偶是工业生产中温度控制系统常用的测量部件,其冷端补偿、动态响应测量与瞬态测温性能是目前业界的研究热点。实际生产中,热电偶使用不当会导致系统温度的超调和滞后,从而产生温度控制误差,严重影响产品的质量。该文构建基于热电偶的温度控制系统,阐述其内部结构和工作原理,研究温控器使用及冷端补偿对温场控制系统的影响,分析因温控器设置不当、温控器使用环境不当、补偿导线反接、补偿导线用错所造成的误差形式及解决办法,通过干燥箱实验验证使用K型铠装热电偶会使系统温度控制产生超温和滞后现象,误差最大可达17 ℃,提出采用PID (proportion integration differentiation)算法改进温度控制系统的措施,为工业生产中的温度控制提供借鉴。


Temperature control error research based on thermocouple sensor
XUE Guanghui, CHAI Jingxuan
China University of Mining and Technology (Beijing), Beijing 100083, China
Abstract: Thermocouple is a common measuring part of temperature control system in industrial production, and its cold end compensation, measurement of dynamic characteristics and performance of transient temperature measurement are the research hotspots in the industry at present. In actual production, the improper uses of thermocouple lead to temperature control error, such as the excessive adjustment of temperature and time lag, which seriously affects the quality of the product. In this paper, the temperature control system is constructed based on thermocouple, and its internal structure and working principle are expounded. The influence of thermostat uses and cold end compensation on the temperature control system is investigated. The error forms and solutions caused by improper setting of thermostat, improper uses environment of thermostat, reverse connection of and mismatch of compensating conductors, are analyzed. Through the drying box experiment, it is proved that the use of K-type sheathed thermocouple causes the system temperature control error, and the excessive adjustment of temperature can reach up to 17℃, and the improved measure of the temperature control system put forward using PID (proportion integration differentiation) algorithm, which provides a reference for temperature control in industrial production.
Keywords: thermocouple;thermostat;temperature control error;cold end compensation;compensating conductor
2019, 45(9):100-104  收稿日期: 2018-10-12;收到修改稿日期: 2018-11-25
基金项目: 国家重点基础研究计划(973计划)(2014CB046306);中央高校基本科研业务费专项资金资助项目(2009QJ16)
作者简介: 薛光辉(1977-),男,河南汝州市人,副教授,博士,主要从事矿山装备自动化与智能化、健康诊断研究
参考文献
[1] 赵静宜, 庞素文, 齐亚茹, 等. 热电偶使用中的几个问题和解决办法[J]. 自动化仪表, 2007(1):115-117
[2] 张根甫, 郝晓剑, 桑涛, 等. 热电偶温度传感器动态响应特性研究[J]. 中国测试, 2015, 41(10):68-72
[3] 白杰, 陈昭, 王伟. 热电偶温度测量的误差及影响因素分析[J]. 机床与液压, 2017, 45(22):138-141
[4] SATAPATHI P, MONDAL B. An approach to improve the performance of a feedback control loop by discrete-time sensor response compensation[J]. Control and Instrumentation, 2016, 4(3):6-10
[5] ZEESHAN M, JAVED K, SHARMA B B. Signal conditioning of thermocouple using intelligent technique[J]. Materials Today, 2017, 4(9):10627-10631
[6] ZHAO B, JIA X, ZHANG Y, et al. Investigation on transient temperature of a reciprocating compressor based on a two-thermocouple probe[J]. International Journal of Thermal Sciences, 2017, 122(28):313-325
[7] 白雪, 李卢丹, 孙娟萍. 机载热电偶冷端补偿及校准方法研究[J]. 中国测试, 2017, 43(9):18-23
[8] 马骥, 潘祝光, 蒋雪根, 等. 保护套管对热电偶测温影响探究[J]. 计量与测试技术, 2018, 45(3):77-78
[9] 孙怀远, 宋来全, 杨丽英, 等. 热电偶温度检测系统设计与应用[J]. 电子测量技术, 2014, 37(12):86-89
[10] 李明, 封航, 张延顺. 基于UMAC的RBF神经网络PID控制[J]. 北京航空航天大学学报, 2018, 44(10):2063-2070
[11] 刘金琨. 先进PID控制MATLAB仿真[M].4版. 北京:电子工业出版社, 2016:312-330.
[12] 胡向东. 传感器与检测技术[M]. 2版. 北京:机械工业出版社, 2013:126-141
[13] KENTO K B, SHIN W. Design of neural network PID controller based on E-FRIT[J]. Electrical engineering in Japan, 2018, 205(2):33-42