您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>用于水下金属探测成像的压电式微机械超声波换能器

用于水下金属探测成像的压电式微机械超声波换能器

2823    2019-09-29

免费

全文售价

作者:杨晋玲

作者单位:中北大学 电子测试技术国家重点实验室, 山西 太原 030051


关键词:PMUT;C-V测试;超声成像;远距离


摘要:

为满足目前对水下金属、蛙人等检测的应用需要,设计一种用于水下金属探测成像的压电式微机械超声换能器。在该结构中,在顶部电极和下电级之间插入AlN层,用于发射和接收超声。当测试距离达到10 m以上就可以满足实际应用需求,而该换能器经过实验得出最远的测试距离为12.8 m,且在12.8 m处测试值与理论值误差仅为0.67 cm,完全可以达到实际检测需要。在一个标准大气压下,利用微系统激光分析仪MSA400对该传感器进行膜位移测量,其测量值为0.28 μm,与理论结果误差为1%。并且详细介绍该传感器的工艺实现过程。利用该传感器实现二维水下超声成像,证明水下存在金属矩形物体。该实验有利于水下超声成像系统的建立。


A piezoelectric micromechanical ultrasonic transducer for underwater metal detection imaging
YANG Jinling
Science and Technology on Electronic Test &Measurement Laboratory, North University of China, Taiyuan 030051, China
Abstract: In order to meet the current application needs of underwater metal and frogman detection. A piezoelectric micromachined ultrasonic transducer(PMUT) for underwater imaging is designed. In the structure, Insert AlN layer between top electrode and lower stage. The transducer is mainly used in a long distance test of underwater environment, the farthest distance is 12.8 m, and the error between the test value and the theoretical value at 12.8 m is only 0.67 cm.The micro system laser analyzer MSA400 has measured the displacement of the sensor at a standard atmospheric pressure of 0.28 μm, and the theoretical error is 1%. The manufacturing operation of the sensor is introduced in detail. Two-dimensional underwater ultrasonic imaging is realized using the sensor, which proved the existence of rectangular objects under water. The experimental results showed that our work can facilitate the establishment of underwater ultrasonic imaging system.
Keywords: PMUT;C-V test;ultrasonic imaging;remote
2019, 45(9):84-88  收稿日期: 2018-12-26;收到修改稿日期: 2019-01-28
基金项目: 国家自然科学基金项目(61525108)
作者简介: 杨晋玲(1992-),女,山西太原市人,硕士研究生,专业方向为电子测量技术
参考文献
[1] LU Y, TANG H, WANG Q. Waveguide piezoelectric micromachined ultrasonic transducer array for short-range pulse-echo imaging[J]. Applied Physics Letters, 2015, 106(19):1101
[2] 于佳琪. 基于Si-SOI键合的微电容超声波换能器设计[D]. 太原:中北大学, 2014.
[3] MASSIMINO G, COLOMBO A, PROCOPIO F, et al. Multiphysics modelling and experimental validation of an air-coupled array of PMUTs with residual stresses[J]. Journal of Micromechanics & Microengineering, 2018, 28(5):054005
[4] 穆林枫, 张文栋, 何常德, 等. 微电容超声传感器的设计与测试[J]. 仪表技术与传感器, 2015(8):1-3
[5] SEIFI M, WALTER M A. Accurate prediction of functional, structural, and stability changes in PITX2 mutations using in silico bioinformatics algorithms[J]. Plos One, 2018, 13(4):0195971
[6] SHIEH B, SABRA K G, DEGERTEKIN F L. A hybrid boundary element model for simulation and optimization of large piezoelectric micromachined ultrasonic transducer arrays[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2018(99):50-59
[7] 张慧, 宋光德, 官志坚, 等. 电容式微加工超声传感器结构参数对性能的影响分析[J]. 传感技术学报, 2008, 21(6):951-953
[8] JEONG B G, KIM D K, HONG S W, et al. Performance and reliability of new CMUT design with improved efficiency[J]. Sensors & Actuators A Physical, 2013, 199(9):325-333
[9] EMADI T A, BUCHANAN D A. Multiple moving membrane CMUT with enlarged membrane displacement and low pull-down voltage[J]. IEEE Electron Device Letters, 2013, 34(12):1578-1580
[10] TSENG C, CHEN C J, YEN J H, et al. Next-generation sequencing profiling of mitochondrial genomes in gout[J]. Arthritis Research & Therapy, 2018, 20(1):137
[11] 苗静. 基于硅晶圆键合的MEMS电容超声传感器研究[D]. 太原:中北大学, 2013.
[12] WANG J, LIU Z, ZHOU Z. The N-terminal domain of pullulanase from Anoxybacillus sp. WB42 modulates enzyme specificity and thermostability[J]. Chembiochem A European Journal of Chemical Biology, 2018, 19(9):949-955
[13] HAHAAMOVICH E, ROSENTHAL A. Ultrasound detection using acoustic apertures[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2018(99):120-126